eXept Software AG Logo

Smalltalk/X Webserver

Documentation of class 'Number':

Home

Documentation
www.exept.de
Everywhere
for:
[back]

Class: Number


Inheritance:

   Object
   |
   +--Magnitude
      |
      +--ArithmeticValue
         |
         +--Number
            |
            +--Complex
            |
            +--FixedDecimal
            |
            +--Fraction
            |
            +--Integer
            |
            +--LimitedPrecisionReal
            |
            +--MetaNumber

Package:
stx:libbasic
Category:
Magnitude-Numbers
Version:
rev: 1.475 date: 2024/04/25 13:49:01
user: stefan
file: Number.st directory: libbasic
module: stx stc-classLibrary: libbasic

Description:


abstract superclass for all kinds of numbers

[class variables:]
    DecimalPointCharacterForPrinting          <Character>                     used when printing
    DecimalPointCharactersForReading          <Collection of Character>       accepted as decimalPointChars when reading

    DefaultDisplayRadix     the radix in which integers present their
                            displayString (which is used in inspectors)
                            If you are to look at many hex numbers, bitmasks
                            etc. you may set this to 2 or 16.
                            (avoids typing printStringRadix:.. all the time
                             - I know - I am lazy ;-). Default is 10.

copyright

COPYRIGHT (c) 1988 by Claus Gittinger All Rights Reserved This software is furnished under a license and may be used only in accordance with the terms of that license and with the inclusion of the above copyright notice. This software may not be provided or otherwise made available to, or used by, any other person. No title to or ownership of the software is hereby transferred.

Class protocol:

Compatibility-VW
o  readIntegerFrom: aStream radix: radix
for VisualWorks compatibility

Javascript support
o  MAX_VALUE
( an extension from the stx:libjavascript package )
this is for JavaScript's Number.MAX_VALUE.
In expecco/stx-JS, there is no MAX_VALUE;
return something useful (simulate 64bits)

Usage example(s):

     JavaScriptParser
        evaluate:'Number.MAX_VALUE;'

o  MIN_VALUE
( an extension from the stx:libjavascript package )
this is for JavaScript's Number.MIN_VALUE.
In expecco/stx-JS, there is no MIN_VALUE;
return something useful (simulate 64bits)

Usage example(s):

     JavaScriptParser
        evaluate:'Number.MIN_VALUE;'

o  NEGATIVE_INFINITY
( an extension from the stx:libjavascript package )
this is for JavaScript's Number.NEGATIVE_INFINITY.
Return a special 'negative infinity' float value

Usage example(s):

     JavaScriptParser
        evaluate:'Number.NEGATIVE_INFINITY;'

o  NaN
( an extension from the stx:libjavascript package )
return the special 'not a number' float value

Usage example(s):

     JavaScriptParser
        evaluate:'Number.NaN;'

o  POSITIVE_INFINITY
( an extension from the stx:libjavascript package )
this is for JavaScript's Number.POSITIVE_INFINITY.
Return the special 'positive infinity' float value

Usage example(s):

     JavaScriptParser
        evaluate:'Number.POSITIVE_INFINITY;'

o  isFinite: aNumber
( an extension from the stx:libjavascript package )
this is for JavaScript's Number.isFinite().
In Smalltalk, you would ask the number.
Return true if the argument is not infinite

o  isInteger: something
( an extension from the stx:libjavascript package )
this is for JavaScript's Number.isInteger().
Return true, if something is an integer (or a float which is equal to its truncated value).
Slightly different from Smalltalk's isInteger instance message.
For JS compatibility

o  isNaN: aNumber
( an extension from the stx:libjavascript package )
this is for JavaScript's Number.isNaN().
Return true if the argument is NaN

o  js_new: argument
( an extension from the stx:libjavascript package )
this is for JavaScript's new Number().

o  parseFloat: aString
( an extension from the stx:libjavascript package )
this is for JavaScript's Number.parseFloat().
Read a float from aString.
Reads up to the first non-number character.
If there is no number at all at the beginning of aString, returns NaN

o  parseInt: aString
( an extension from the stx:libjavascript package )
this is for JavaScript's Number.parseInt().
Read an integer from aString.
Reads up to the first non-number character.
If there is no number at all at the beginning of aString, returns NaN

coercing & converting
o  nonFiniteCoercionFrom: aNumber to: rslt
conversion resulted in a non-finite result.
This common code handles NaN and infinities,
and raises an error otherwise.
If the error is proceeded, the non-finite result is returned.

constants
o  e
return the closest approximation of the irrational number e

** This method must be redefined in concrete classes (subclassResponsibility) **

o  eDigits
return th printString of the irrational number e,
with enough digits so that instances with different precision can read from it

o  halfPi
return Pi/2 in my representation (and accuracy).

o  halfPiDigits
return the printString of the irrational number pi/2,
with enough digits so that instances with different precision can read from it

o  halfPiNegative
return -Pi/2 in my representation (and accuracy).

o  halfpi
obsolete name for backward compatibility
return -Pi/2 in my representation (and accuracy).

o  halfpiNegative
obsolete name for backward compatibility
return -Pi/2 in my representation (and accuracy).

o  i
return the imaginary unit i

Usage example(s):

     1 + Number i          -> (1+1i)
     Number i + 10         -> (10+1i)
     Number i * Number i   -> -1

Usage example(s):

Modified (format): / 10-12-2020 / 22:22:55 / cg

o  ln10
return ln(10) in my representation (and accuracy).

** This method must be redefined in concrete classes (subclassResponsibility) **

o  ln10Digits
return th printString of the irrational number ln(10),
with enough digits so that instances with different precision can read from it

o  ln2
return ln(2) in my representation (and accuracy).

** This method must be redefined in concrete classes (subclassResponsibility) **

o  ln2Digits
return th printString of the irrational number ln(2),
with enough digits so that instances with different precision can read from it

o  negativeZero
if my concrete class supports it, return a zero with negative sign.
Otherwise just return zero

Usage example(s):

     FloatE negativeZero
     FloatD negativeZero
     FloatQ negativeZero
     LargeFloat negativeZero

o  phi
return Phi in my representation (and accuracy).

Usage example(s):

phi is (1+5 sqrt)/2

Usage example(s):

     Float phix
     LongFloat phix
     LargeFloat phix
     QuadFloat phix

o  phiDigits
return the printString of the irrational number phi,
with enough digits so that instances with different precision can read from it

o  pi
return Pi in my representation (and accuracy).
This is a fallback for all classes which have no special
representation for Pi (or which cannot represent it)

o  piDigits
return th printString of the irrational number pi,
with enough digits so that instances with different precision can read from it

o  piNegative
return -Pi in my representation (and accuracy).

o  sqrt2
return sqrt(2) in my representation (and accuracy).

** This method must be redefined in concrete classes (subclassResponsibility) **

o  sqrt2Digits
return th printString of the irrational number sqrt(2),
with enough digits so that instances with different precision can read from it

o  sqrt3
return sqrt(3) in my representation (and accuracy).

** This method must be redefined in concrete classes (subclassResponsibility) **

o  sqrt3Digits
return th printString of the irrational number sqrt(3),
with enough digits so that instances with different precision can read from it

o  twoPi
return Pi*2 in my representation (and accuracy).

o  twoPiNegative
return -Pi*2 in my representation (and accuracy).

constants & defaults
o  decimalPointCharacter
printed

** This is an obsolete interface - do not use it (it may vanish in future versions) **

o  decimalPointCharacter: aCharacter
printed

** This is an obsolete interface - do not use it (it may vanish in future versions) **

o  decimalPointCharacterForPrinting
printed

o  decimalPointCharacterForPrinting: aCharacter
printed

Usage example(s):

     1.5 printString

     Number decimalPointCharacterForPrinting:$,.
     1.5 printString
     Number decimalPointCharacterForPrinting:$..

o  decimalPointCharacters
accepted when converting from a string

** This is an obsolete interface - do not use it (it may vanish in future versions) **

o  decimalPointCharacters: aCollectionOfCharacters
accepted when converting from a string

** This is an obsolete interface - do not use it (it may vanish in future versions) **

o  decimalPointCharactersForReading
default when converting from a string

Usage example(s):

     1.5 printString

     Number decimalPointCharactersForReading:#( $. $,) .
     Number fromString:'1.5'.
     Number fromString:'1,5'.
     Number decimalPointCharactersForReading:#( $. ).

o  decimalPointCharactersForReading: aCollectionOfCharacters
accepted when converting from a string

Usage example(s):

     Number decimalPointCharactersForReading:#( $. $,) .
     Number fromString:'1.5'.
     Number fromString:'1,5'.
     Number decimalPointCharactersForReading:#( $. ).

o  nameOfInf
adjustable printname of infinity;
some prefer INF, some inf.
You can configure this by setting this variable

o  nameOfNaN
adjustable printname of NaN;
some prefer NAN, some nan and some even NaN.
You can configure this by setting this variable

error reporting
o  errorInfiniteArgument: receiver selector: selector
Number errorInfiniteArgument:Float infinity selector:'ln'

o  errorNaNArgument: receiver selector: selector
Number errorNaNArgument:Float NaN selector:'ln'

o  errorUnsupported
you may proceed from this error, to get an alternative representation result
(of course, maybe with with less than the expected precision)

o  raise: aSignalSymbolOrErrorClass receiver: someNumber selector: sel arg: arg errorString: text
ST-80 compatible signal raising. Provided for public domain numeric classes

Usage example(s):

     Number
        raise:#domainErrorSignal
        receiver:1.0
        selector:#sin
        arg:nil
        errorString:'foo bar test'

o  raise: aSignalSymbolOrErrorClass receiver: someNumber selector: sel errorString: text
ST-80 compatible signal raising. Provided for public domain numeric classes.
aSignalSymbolOrErrorClass is either an Error-subclass, or
the selector which is sent to myself, to retrieve the Exception class / Signal.

Usage example(s):

     Number
        raise:#domainErrorSignal
        receiver:1.0
        selector:#foo
        errorString:'foo bar test'

instance creation
o  coerce: aNumber
convert the argument aNumber into an instance of the receiver (class) and return it.

o  fastFromString: aString
return the next Float, Integer or ShortFloat from the string.
No spaces are skipped.

This is a specially tuned entry (using a low-level C-call), which
returns garbage if the argument string is not a valid float number.
It has been added to allow high speed string decomposition into numbers,
especially for mass-data.

Usage example(s):

     Float fromString:'12345.0'
     Float fastFromString:'12345.0'

     Integer fromString:'12345'
     Integer fastFromString:'12345'

     should be roughly 10times faster than the general method:

     Time millisecondsToRun:[
        100000 timesRepeat:[ Float fromString:'12345.0' ]
     ].
     Time millisecondsToRun:[
        100000 timesRepeat:[ Float fastFromString:'12345.0' ]
     ].

     Time millisecondsToRun:[
        100000 timesRepeat:[ Integer fromString:'12345' ]
     ].
     Time millisecondsToRun:[
        100000 timesRepeat:[ Integer fastFromString:'12345' ]
     ].

o  fastFromString: aString at: startIndex
return the next Float, Integer or ShortFloat from the string.
No spaces are skipped.
Returns zero, if there is no valid number at the startIndex.
Redefined for speed in subclasses.

This is the fallback handling nan and inf for the specially tuned entries (using a low-level C-call), which
which return garbage if the argument string is not a valid number.

Usage example(s):

     Integer fromString:'nan'  
     Integer fastFromString:'nan' at:1   
     Integer fastFromString:'inf' at:1   

     Float fromString:'12345.0'
     Float fastFromString:'xxx12345.0' at:4

     FixedPoint fromString:'12345.4'
     FixedPoint fastFromString:'xxx12345.4' at:4

     Fraction fromString:'12345.4'
     Fraction fastFromString:'xxx12345.4' at:4

     Integer fromString:'12345'
     Integer fastFromString:'xxx12345' at:4

     should be roughly 10times faster than the general method:

     Time millisecondsToRun:[
        100000 timesRepeat:[ Float fromString:'12345.0' ]
     ].
     Time millisecondsToRun:[
        100000 timesRepeat:[ Float fastFromString:'12345.0' ]
     ].

     Time millisecondsToRun:[
        100000 timesRepeat:[ Integer fromString:'12345' ]
     ].
     Time millisecondsToRun:[
        100000 timesRepeat:[ Integer fastFromString:'12345' ]
     ].

o  forNonFiniteNumber: aNumber
common code to create an instance corresponding to aNumber,
which must be one of NaN, +inf or -inf.

o  fromNumber: aNumber
return aNumber coerced to myself

o  fromString: aString
return a number by reading from aString.
In contrast to readFrom:, no garbage is allowed after the number.
I.e. the string must contain exactly one valid number (with optional separators around)

Usage example(s):

     Number fromString:'12345'
     Number fromString:'abc'
     Number fromString:'1abc'   -> raises an error
     Number readFrom:'1abc'     -> reads a 1
     Number readFrom:'10/2'     -> reads a 10
     Number fromString:'10/2'   -> raises an error
     Number fromString:'(1/2)'  -> reads a fraction
     Number readFrom:'(1/2)'    -> reads a fraction
     Number readFrom:'(10/2)'   -> reads a 5
     '12345' asNumber

o  fromString: aString decimalPointCharacter: decimalPointCharacter
return a number by reading from aString.
In contrast to readFrom:, no garbage is allowed after the number.
I.e. the string must contain exactly one valid number (with optional separators around)

Usage example(s):

     Number fromString:'12345.99' decimalPointCharacter:$.    => 12345.99
     Number fromString:'12345,99' decimalPointCharacter:$,    => 12345.99
     Number fromString:'12345,99e3' decimalPointCharacter:$,  => 12345990.0
     ScaledDecimal fromString:'12345,99' decimalPointCharacter:$,  => 12345.99
     Number fromString:'aaa,99' decimalPointCharacter:$,      => error
     Number fromString:'123,99aaa' decimalPointCharacter:$,   => error

o  fromString: aString decimalPointCharacter: decimalPointCharacter onError: exceptionBlock
return a number by reading from aString.
In contrast to readFrom:, no garbage is allowed after the number.
I.e. the string must contain exactly one valid number (with optional separators around)

Usage example(s):

     Number fromString:'12,345' decimalPointCharacter:',' onError:0
     Number fromString:'12,345' decimalPointCharacter:$, onError:0
     Number fromString:'12,345,456' decimalPointCharacter:$. thouseandsSeparator:$, onError:0
     Number fromString:'12,345,45' decimalPointCharacter:$. thouseandsSeparator:$, onError:0

o  fromString: aString decimalPointCharacter: decimalPointCharacter thousandsSeparator: thousandsSeparator onError: exceptionBlock
return a number by reading from aString.
In contrast to readFrom:, no garbage is allowed after the number.
I.e. the string must contain exactly one valid number (with optional separators around)

Usage example(s):

     Number fromString:'12,345' decimalPointCharacter:',' onError:0
     Number fromString:'12,345' decimalPointCharacter:$, onError:0
     Number fromString:'12345,456' decimalPointCharacter:$. thousandsSeparator:$, onError:0
     Number fromString:'12,345,456' decimalPointCharacter:$. thousandsSeparator:$, onError:0
     Number fromString:'12,345,456,789' decimalPointCharacter:$. thousandsSeparator:$, onError:0
     Number fromString:'12,345,456,789.89' decimalPointCharacter:$. thousandsSeparator:$, onError:0
     Number fromString:'12.345.456.789,89' decimalPointCharacter:$, thousandsSeparator:$. onError:0

    these report an error:
     Number fromString:'12,345,45' decimalPointCharacter:$. thousandsSeparator:$, onError:0
     Number fromString:'12.345.456.789' decimalPointCharacter:$. thousandsSeparator:$, onError:0
     Number fromString:'12.345.456.78' decimalPointCharacter:$. thousandsSeparator:$, onError:0

o  fromString: aString decimalPointCharacters: decimalPointCharacters
return a number by reading from aString.
In contrast to readFrom:, no garbage is allowed after the number.
I.e. the string must contain exactly one valid number (with optional separators around)

Usage example(s):

     Number fromString:'12345'
     Number fromString:'abc'
     Number fromString:'1abc'
     '12345' asNumber

o  fromString: aString decimalPointCharacters: decimalPointCharacters onError: exceptionBlock
return a number by reading from aString.
In contrast to readFrom:, no garbage is allowed after the number.
I.e. the string must contain exactly one valid number (with optional separators around)

Usage example(s):

     Number fromString:'12345' onError:0
     Number fromString:'12,345' decimalPointCharacters:',' onError:0
     Number fromString:'12,345' decimalPointCharacters:',' onError:0
     Number fromString:'fooBarBaz' onError:0
     Number fromString:'123fooBarBaz' onError:0
     Number fromString:'123,fooBarBaz' decimalPointCharacters:',' onError:0

o  fromString: aString decimalPointCharacters: decimalPointCharacters thousandsSeparator: thousandsSeparator onError: exceptionBlock
return a number by reading from aString.
In contrast to readFrom:, no garbage is allowed after the number.
I.e. the string must contain exactly one valid number (with optional separators around)

Usage example(s):

     Number fromString:'12345' onError:0
     Number fromString:'12,345' decimalPointCharacters:',' onError:0
     Number fromString:'12,345' decimalPointCharacters:',' onError:0
     Number fromString:'fooBarBaz' onError:0
     Number fromString:'123fooBarBaz' onError:0
     Number fromString:'123,fooBarBaz' decimalPointCharacters:',' onError:0

o  fromString: aString onError: exceptionBlock
return a number by reading from aString.
In contrast to readFrom:, no garbage is allowed after the number.
I.e. the string must contain exactly one valid number (with optional separators around)

Usage example(s):

     Number fromString:'12345' onError:0
     Number fromString:'fooBarBaz' onError:0
     Number fromString:'123fooBarBaz' onError:0

o  newFrom: aNumber
this allows for as: to be used for conversion

o  readFrom: aStringOrStream decimalPointCharacter: decimalPointCharacter
return the next Number from the (character-)stream aStream;
skipping all whitespace first.
Return the value of exceptionBlock, if no number can be read.
This method is less strict than the smalltalk number reader; it
allows for prefixed + and also allows missing fractional part after eE.
It also allows garbage after the number - i.e. it reads what it can.
See #fromString: , which is more strict and does not allow garbage at the end.

Usage example(s):

     Number readFrom:'0' decimalPointCharacter:$.
     Number readFrom:'123.456' decimalPointCharacter:$.
     Number readFrom:'123,456' decimalPointCharacter:$,

o  readFrom: aStringOrStream decimalPointCharacter: decimalPointCharacter onError: exceptionBlock
return the next Number from the (character-)stream aStream;
skipping all whitespace first.
Return the value of exceptionBlock, if no number can be read.
This method is less strict than the Smalltalk number reader;
it allows for prefixed + and also allows missing fractional part after eE.
It supports the regular Smalltalk radix prefix xr.
It also allows garbage after the number - i.e. it reads what it can.
See #fromString: , which is more strict and does not allow garbage at the end.

Notice (see examples below):
if sent to Number, it will decide which type of number to return (depending on the exponent character);
if sent to a concrete number-class, an instance of that class will be returned (independent of the exponent character)

Usage example(s):

     Number readFrom:(ReadStream on:'54.32e-01') decimalPointCharacter:$. onError:[self halt].
     Number readFrom:(ReadStream on:'54,32e-01') decimalPointCharacter:$, onError:[self halt].

o  readFrom: aStringOrStream decimalPointCharacters: decimalPointCharacters
return the next Number from the (character-)stream aStream;
skipping all whitespace first.
Return the value of exceptionBlock, if no number can be read.
This method is less strict than the smalltalk number reader; it
allows for prefixed + and also allows missing fractional part after eE.
It also allows garbage after the number - i.e. it reads what it can.
See #fromString: , which is more strict and does not allow garbage at the end.

Usage example(s):

     Number readFrom:'123.456' decimalPointCharacters:'.'
     Number readFrom:'123,456' decimalPointCharacters:'.,'
     Number readFrom:'123,456' decimalPointCharacters:'.'

o  readFrom: aStringOrStream decimalPointCharacters: decimalPointCharacters allowCStyle: allowCStyle onError: exceptionBlock
return the next Number from the (character-)stream aStream;
skipping all whitespace first.
Return the value of exceptionBlock, if no number can be read.
This method is less strict than the Smalltalk number reader;
it allows for prefixed + and also allows missing fractional part after eE.
It supports 0x, 0o and 0b prefixes (hex, octal and binary)
and the regular Smalltalk radix prefix xr.
If also allows for strings like '1.0×1015' to be read (as 1E+15).

It also allows garbage after the number - i.e. it reads what it can.
See #fromString: , which is more strict and does not allow garbage at the end.

Notice (see examples below):
if sent to Number, it will decide which type of number to return (depending on the exponent character);
if sent to a concrete number-class, an instance of that class will be returned (independent of the exponent character)

Usage example(s):

     Number readFrom:(ReadStream on:'1.234.567,99')
        decimalPointCharacter:$,
        thousandsSeparator:$.
        onError:[self halt].

o  readFrom: aStringOrStream decimalPointCharacters: decimalPointCharacters onError: exceptionBlock
return the next Number from the (character-)stream aStream;
skipping all whitespace first.
Return the value of exceptionBlock, if no number can be read.
This method is less strict than the Smalltalk number reader;
it allows for prefixed + and also allows missing fractional part after eE.
It supports the regular Smalltalk radix prefix xr.
It also allows garbage after the number - i.e. it reads what it can.
See #fromString: , which is more strict and does not allow garbage at the end.

Notice (see examples below):
if sent to Number, it will decide which type of number to return (depending on the exponent character);
if sent to a concrete number-class, an instance of that class will be returned (independent of the exponent character)

Usage example(s):

     Number readFrom:(ReadStream on:'54.32e-01') decimalPointCharacters:'.' onError:[self halt].

     Number readFrom:(ReadStream on:'12345') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12345.0') decimalPointCharacters:'.' onError:[self halt].

     Number readFrom:(ReadStream on:'12345.0f') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12345.0e') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12345.0q') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12345.0d') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12345.0s') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12345.01s') decimalPointCharacters:'.' onError:[self halt].

     Float readFrom:(ReadStream on:'12345') decimalPointCharacters:'.' onError:[self halt].

     Number readFrom:(ReadStream on:'12345678901234567890')
     Number readFrom:(ReadStream on:'12345678901234567890.0')
     Number readFrom:(ReadStream on:'12345678901234567890.012345678901234567890')
     Number readFrom:(ReadStream on:'16rAAAAFFFFAAAAFFFF')
     Number readFrom:'16rAAAAFFFFAAAAFFFF'
     Number readFrom:'16r100A'
     Number readFrom:'16r100a'
     Number readFrom:'0.000001'
     '+00000123.45' asNumber
     Number readFrom:'(1/3)'
     Number readFrom:'(-1/3)'
     Number readFrom:'(1/-3)'
     Number readFrom:'-(1/3)'
     Number readFrom:'-(-1/3)'
     Number readFrom:'(-1/3'
     Number readFrom:'99s'
     Number readFrom:'99.00s'
     Number readFrom:'99.0000000s'
     Number readFrom:'.0000000s'
     Number readFrom:'.0000000q'
     Number readFrom:'.0000000f'
     Number readFrom:'.0000000e'
     Number readFrom:'.0000000s1'
     Number readFrom:'.0000000q1'
     Number readFrom:'.0000000f1'
     Number readFrom:'.0000000e1'
     LongFloat readFrom:'.00000001'
     Number readFrom:'.00000000000001'
     Number readFrom:'.001'
     ShortFloat readFrom:'.001'
     Number readFrom:'123garbage'      -> returns 123
     Number fromString:'123garbage'    -> raises an error

     DecimalPointCharactersForReading := #( $. $, ).
     Number readFrom:'99,00'

     DecimalPointCharactersForReading := #( $. ).
     Number readFrom:'99,00'

     Number readFrom:'-(1d)'

o  readFrom: aStringOrStream decimalPointCharacters: decimalPointCharacters thousandsSeparator: thousandsSeparator allowCStyle: allowCStyle onError: exceptionBlock
return the next Number from the (character-)stream aStream;
skipping all whitespace first.
Return the value of exceptionBlock, if no number can be read.
This method is less strict than the Smalltalk number reader;
it allows for prefixed + and also allows missing fractional part after eE.
It supports 0x, 0o and 0b prefixes (hex, octal and binary)
and the regular Smalltalk radix prefix xr.
If also allows for strings like '1.0×1015' to be read (as 1E+15).

It also allows garbage after the number - i.e. it reads what it can.
See #fromString: , which is more strict and does not allow garbage at the end.

Notice (see examples below):
if sent to Number, it will decide which type of number to return (depending on the exponent character);
if sent to a concrete number-class, an instance of that class will be returned (independent of the exponent character)

Usage example(s):

do not multiply by Fractions. The result is inaccurate in the last digit:
                        (Float fmin * 2) = (Number readFrom:(Float fmin * 2) storeString)

Usage example(s):

as in Number readFrom:'1.235×104'

Usage example(s):

     Number readFrom:(ReadStream on:'12345') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'10e3') decimalPointCharacters:'.' onError:[self halt].

     Number readFrom:(ReadStream on:'54.32e-01') decimalPointCharacters:'.' onError:[self halt].

     Number readFrom:(ReadStream on:'12345') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12345.0') decimalPointCharacters:'.' onError:[self halt].

     Number readFrom:(ReadStream on:'12345.0f') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12345.0e') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12345.0q') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12345.0d') decimalPointCharacters:'.' onError:[self halt].

     Number readFrom:(ReadStream on:'12345.0s') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12345.01s') decimalPointCharacters:'.' onError:[self halt].

     Number readFrom:(ReadStream on:'12345.0Q') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'123456.0Q') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12345678901234567890.0Q') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12345678901234567890.0q') decimalPointCharacters:'.' onError:[self halt].

     Float readFrom:(ReadStream on:'12345') decimalPointCharacters:'.' onError:[self halt].

     Number readFrom:(ReadStream on:'12345678901234567890')
     Number readFrom:(ReadStream on:'12345678901234567890.0')
     Number readFrom:(ReadStream on:'12345678901234567890.012345678901234567890')
     Number readFrom:(ReadStream on:'16rAAAAFFFFAAAAFFFF')
     Number readFrom:'16rAAAAFFFFAAAAFFFF'
     Number readFrom:'16r100A'
     Number readFrom:'16r100a'
     Number readFrom:'16r-100A'
     Number readFrom:'-16r100A'
     Number readFrom:'0x100A'
     Number readFrom:'-0x100A'
     Number readFrom:'0x-100A'
     Number readFrom:'0.000001'
     '+00000123.45' asNumber
     Number readFrom:'(1/3)'
     Number readFrom:'(-1/3)'
     Number readFrom:'(1/-3)'
     Number readFrom:'-(1/3)'
     Number readFrom:'-(-1/3)'
     Number readFrom:'(-1/3'

     Number readFrom:'99s'
     Number readFrom:'99.00s'
     Number readFrom:'99.0000000s'
     Number readFrom:'0.0000000s'
     Number readFrom:'.0000000s'
     Number readFrom:'.0000000s1'
     Number readFrom:'.0000000s4'
     Number readFrom:'.3s'
     Number readFrom:'0.3s'

     Number readFrom:'.0000000e'
     Number readFrom:'.0000000f'
     Number readFrom:'.0000000q'
     Number readFrom:'.0000000e1'
     Number readFrom:'.0000000f1'
     Number readFrom:'.0000000q1'
     LongFloat readFrom:'.00000001'
     Number readFrom:'.00000000000001'
     Number readFrom:'.001'
     ShortFloat readFrom:'.001'
     Number readFrom:'123garbage'      -> returns 123
     Number fromString:'123garbage'    -> raises an error

     DecimalPointCharactersForReading := #( $. $, ).
     Number readFrom:'99,00'

     DecimalPointCharactersForReading := #( $. ).
     Number readFrom:'99,00'

     Number readFrom:'.'          -> raises an error
     Number readFrom:'.e'         -> raises an error
     Number readFrom:'.s'

     Number readFrom:'123.4'      123.4 {Float}
     Number readFrom:'123.4f'     123.4 {ShortFloat}
     Number readFrom:'123.4e'     123.4 {Float}
     Number readFrom:'123.4d'     123.4 {Float}  
     Number readFrom:'123.4q'     123.4 {LongFloat}
     Number readFrom:'123.4Q'     123.3999999999998635757947341848414 {QuadFloat}  (wrong!)
     Number readFrom:'123.4QO'    123.4 {OctaFloat}  
     Number readFrom:'123.4QL'    123.4 {LargeFloat} 
     Number readFrom:'123.4QD'    123.40000000000000002220446049250313080847263336181640625 {QDouble} (wrong!)

     Number readFrom:'123.4e2f'     1234.0 {ShortFloat}
     Number readFrom:'123.4e2e'     1234.0 {Float}
     Number readFrom:'123.4e2d'     1234.0 {Float}  
     Number readFrom:'123.4e2q'     1234.0 {LongFloat}
     Number readFrom:'123.4e2Q'     12339.9999999999863575794765824 {QuadFloat}  (wrong!)
     Number readFrom:'123.4e2QO'    12340.0 {OctaFloat}  
     Number readFrom:'123.4e2QL'    12340.0 {LargeFloat} 
     Number readFrom:'123.4e2QD'    12340.0 {QDouble} 

o  readFrom: aStringOrStream decimalPointCharacters: decimalPointCharacters thousandsSeparator: thousandsSeparator onError: exceptionBlock
return the next Number from the (character-)stream aStream;
skipping all whitespace first.
Return the value of exceptionBlock, if no number can be read.
This method is less strict than the Smalltalk number reader;
it allows for prefixed + and also allows missing fractional part after eE.
It supports the regular Smalltalk radix prefix xr.
It also allows garbage after the number - i.e. it reads what it can.
See #fromString: , which is more strict and does not allow garbage at the end.

Notice (see examples below):
if sent to Number, it will decide which type of number to return (depending on the exponent character);
if sent to a concrete number-class, an instance of that class will be returned (independent of the exponent character)

Usage example(s):

     Number readFrom:(ReadStream on:'12345') decimalPointCharacters:'.' onError:[self halt].
     Number readFrom:(ReadStream on:'12,345.0') decimalPointCharacters:'.' thousandsSeparator:$, onError:[self halt].
     Number readFrom:(ReadStream on:'12,1345.0') decimalPointCharacters:'.' thousandsSeparator:$, onError:[self halt].

o  readFrom: aStringOrStream onError: exceptionBlock
return the next Number from the (character-)stream aStream;
skipping all whitespace first; return the value of exceptionBlock,
if no number can be read.
This method is less strict than the smalltalk number reader; it
allows for prefixed + and also allows missing fractional part after eE.
It also allows garbage after the number - i.e. it reads what it can.
See #fromString: , which is more strict and does not allow garbage at the end.

Usage example(s):

     Number readFrom:(ReadStream on:'54.32e-01')                => 5.432
     Number readFrom:(ReadStream on:'12345678901234567890')     => 12345678901234567890
     Number readFrom:(ReadStream on:'12345678901234567890.0')   => 12345678901234567890.0
     Number readFrom:(ReadStream on:'12345678901234567890.012345678901234567890')       => 1.234567890123456789001234567890123456789e+19
     Number readFrom:(ReadStream on:'16rAAAAFFFFAAAAFFFF')      => 12297923206033637375     
     Number readFrom:'16rAAAAFFFFAAAAFFFF'                      => 12297923206033637375
     Number readFrom:'0.000001'                                 => 1e-06
     '+00000123.45' asNumber                                    => 123.45
     Number readFrom:'0'                                        => 0
     Number readFrom:'99s2'                                     => 99.00 (FixedPoint)
     Number readFrom:'99s'                                      Error
     Number readFrom:'99.00s'                                   => 99.00 (FixedPoint)
     Number readFrom:'99.0000000s'                              => 99.0000000 (FixedPoint)
     Number readFrom:'.0000000s'                                => 0.0000000
     Number readFrom:'.0000000q'                                => 0.0 (Float80)
     Number readFrom:'.0000000f'                                => 0.0 (Float32)
     Number readFrom:'.0000000e'                                => 0.0
     Number readFrom:'.0000000s1'                               => 0.0 (FixedPoint)
     Number readFrom:'.0000000q1'
     Number readFrom:'.0000000f1'
     Number readFrom:'.0000000e1'
     Number readFrom:'3+4i'
     Number readFrom:'4i'

     DecimalPointCharactersForReading := #( $. $, ).
     Number readFrom:'99,00'

     DecimalPointCharactersForReading := #( $. ).
     Number readFrom:'99,00'

o  readNonImaginaryFrom: aStringOrStream onError: exceptionBlock
return the next non-imaginary Number from the (character-)stream aStream;
skipping all whitespace first; return the value of exceptionBlock,
if no number can be read.
This method is less strict than the smalltalk number reader; it
allows for prefixed + and also allows missing fractional part after eE.
It also allows garbage after the number - i.e. it reads what it can.
See #fromString: , which is more strict and does not allow garbage at the end.

o  readPossiblyComplexFrom: aStringOrStream onError: exceptionBlock
supports:
r + ni
r
ni

o  readSmalltalkSyntaxFrom: aStream
ST-80 compatibility (thanks to a note from alpha testers).
Read and return the next Number in Smalltalk syntax from the
(character-) aStream.
Returns nil if aStream contains no valid number.
Notice that ST/X supports C-style integers, which VW does not

Usage example(s):

     Number readSmalltalkSyntaxFrom:'99d'
     Number readSmalltalkSyntaxFrom:'99.00d'
     Number readSmalltalkSyntaxFrom:'54.32e-01'
     Number readSmalltalkSyntaxFrom:'12345678901234567890'
     Number readSmalltalkSyntaxFrom:'16rAAAAFFFFAAAAFFFF'
     Number readSmalltalkSyntaxFrom:'foobar'
     Number readSmalltalkSyntaxFrom:'(1/10)'

     Number readSmalltalkSyntaxFrom:'(1/0)'
     Number readSmalltalkSyntaxFrom:'0xA0'
     Number readSmalltalkSyntaxFrom:'0b1010'

     Number readFrom:'(1/3)'
     Number readFrom:'(-1/3)'
     Number readFrom:'-(1/3)'
     Number readFrom:'(1/-3)'
     Number readFrom:'(-1/-3)'
     Number readFrom:'-(-1/-3)'
     Number readSmalltalkSyntaxFrom:'+00000123.45'
     Number readFrom:'+00000123.45'

     |s|
     s := ReadStream on:'2.'.
     Number readSmalltalkSyntaxFrom:s.
     s next

     |s|
     s := ReadStream on:'2.0.'.
     Number readSmalltalkSyntaxFrom:s.
     s next

o  readSmalltalkSyntaxFrom: aStream onError: errorValue
ST-80 compatibility (thanks to a note from alpha testers)
read and return the next Number in smalltalk syntax from the
(character-) aStream.
Returns nil if aStream contains no valid number.

Usage example(s):

     Number readSmalltalkSyntaxFrom:'foo' onError:123
     Number readSmalltalkSyntaxFrom:'16r123' onError:-1
     Number readSmalltalkSyntaxFrom:'0x123' onError:-1
     Number readSmalltalkSyntaxFrom:'16r1.1' onError:-1
     Number readSmalltalkSyntaxFrom:'10r1.1' onError:-1
     Number readSmalltalkSyntaxFrom:'16r10.1' onError:-1
     Number readSmalltalkSyntaxFrom:'10r10.1' onError:-1
     Number readSmalltalkSyntaxFrom:'16r10.1e10' onError:-1
     Number readSmalltalkSyntaxFrom:'10r10.1e10' onError:-1

misc
o  displayRadix: aNumber
being tired of always sending #printStringRadix: in the inspectors,
this allows you to change the default print radix for the displayString
method.

Usage example(s):

     Integer displayRadix:16. 123456 inspect
     Integer displayRadix:10. 123456 inspect

o  taylorSeriesIterationLimit
the max. number of terms to be computed when doing taylor series
approximations. These will stop and raise an error, when
a series approximation has not reached that precision
and that many terms have been computed.
The exception can be proceeded for more iterations

o  taylorSeriesIterationLimit: anInteger
the max. number of terms to be computed when doing taylor series
approximations. These will stop and raise an error, when
a series approximation has not reached that precision
and that many terms have been computed.
The exception can be proceeded for more iterations

private
o  readMantissaAndScaleFrom: aStream base: radix
helper for readFrom: -
return a tuple consisting of:
- the mantissa (post-decimal-point digits) from the (character-)stream aStream
as a float, longFloat (if more than 6 digits are given) or largeFloat (more than 15 digits)
- the mantissa as integer
- the scale (number of postDecimalPoint digits) is returned
(to support reading fixedPoint numbers and to not loose precision).
The integer mantissa is needed as we do not yet know the target type
(could be LongFloat or even QDouble).
i.e. If it turns out, that the number of digits is too many for Float precision,
the caller may still compute it using the numerator and the scale
with: numerator asHighPrecisionFloat / (radix raisedTo:scale).
No whitespace is skipped.

Usage example(s):

     Number readMantissaAndScaleFrom:'234'    readStream base:10.      => #(0.234 234 3)
     Number readMantissaAndScaleFrom:'2'      readStream base:10.      => #(0.2 2 1)
     Number readMantissaAndScaleFrom:'234567' readStream base:10.      => #(0.234567 234567 6)
     Number readMantissaAndScaleFrom:'1234567' readStream base:10.     => #(0.1234567 1234567 7)
     Number readMantissaAndScaleFrom:'234000' readStream base:10.      => #(0.234 234000 6)
     Number readMantissaAndScaleFrom:'234'    readStream base:10.      => #(0.234 234 3)
     Number readMantissaAndScaleFrom:'000234' readStream base:10.      => #(0.000234 234 6)
     Number readMantissaAndScaleFrom:'01' readStream base:10.          => #(0.01 1 2)
     Number readMantissaAndScaleFrom:'001' readStream base:10.         => #(0.001 1 3)
     Number readMantissaAndScaleFrom:'0001' readStream base:10.        => #(0.0001 1 4)
     Number readMantissaAndScaleFrom:'000000000000000000000000000024' readStream base:10.                      => #(2.4e-29 24 30)
     Number readMantissaAndScaleFrom:'0000000000000000000000000000000000000000000024' readStream base:10.      => #(2.4e-45 24 46)
     Number readMantissaAndScaleFrom:(Number piDigits copyFrom:3) readStream base:10.                          => #(0.1415926535897932385 14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152 326)
     Number readMantissaAndScaleFrom:'123456789012345678901234567890' readStream base:10.
     Number readMantissaAndScaleFrom:'1234567890123456789012345678901234567890' readStream base:10.

     Number readMantissaAndScaleFrom:'12345678901234567890' readStream base:10.        => #(0.1234567890123456789 12345678901234567890 20)
     Number readMantissaAndScaleFrom:'123456789012345' readStream base:10.             => #(0.123456789012345 123456789012345 15)
     Number readMantissaAndScaleFrom:'1234567890123456' readStream base:10.            => #(0.1234567890123456 1234567890123456 16)
     
     Number readFrom:'1.23456789012345678' readStream.    => 1.23456789012345678
     Number readFrom:'1.23456789012345678901' readStream. => 1.23456789012345678901
     Number readFrom:'1.23456789012345678901234567' readStream. => 1.23456789012345678901234567

queries
o  epsilon
return the maximum relative spacing of instances of mySelf
(i.e. the value-delta of the least significant bit)
according to ISO C standard;
Ada, C, C++ and Python language constants;
Mathematica, MATLAB and Octave; and various textbooks
see https://en.wikipedia.org/wiki/Machine_epsilon

** This method must be redefined in concrete classes (subclassResponsibility) **

o  epsilonForCloseTo
return the epsilon used in the closeTo: comparison.
(useful would be something like self epsilon or epsilon*10,
but for Squeak compatibility.... - sigh)

o  isAbstract
Return if this class is an abstract class.
True is returned for Number here; false for subclasses.
Abstract subclasses must redefine this again.

o  isSupported
redefined in classes which are present, but not yet supported


Instance protocol:

Compatibility-Cuis
o  isWithin: count floatsFrom: anotherNumber
( an extension from the stx:libcompat package )
compatibility;
same as isAlmostEqualTo:aNumber nEpsilon:nE

Usage example(s):

     1 isWithin:5 floatsFrom:1.000000000000001  -> true
     1 isWithin:5 floatsFrom:1.00000000000001   -> false

     1 asShortFloat isWithin:5 floatsFrom:1.000000000000001 asShortFloat  -> true
     1 asShortFloat isWithin:5 floatsFrom:1.00000000000001 asShortFloat   -> true
     1 asShortFloat isWithin:5 floatsFrom:1.0000000000001 asShortFloat    -> true
     1 asShortFloat isWithin:5 floatsFrom:1.0000001 asShortFloat          -> true
     1 asShortFloat isWithin:5 floatsFrom:1.000001 asShortFloat           -> false

     1 asLongFloat isWithin:5 floatsFrom:1.0000000000000001 asLongFloat -> true
     1 asLongFloat isWithin:5 floatsFrom:1.000000000000001 asLongFloat -> false
     1 asLongFloat isWithin:5 floatsFrom:1.00000000000001  asLongFloat -> false

     1 asQuadFloat isWithin:5 floatsFrom:1.000000000000000000000001 asQuadFloat -> false
     1 asQuadFloat isWithin:5 floatsFrom:1.00000000000000000001 asQuadFloat -> false
     1 asQuadFloat isWithin:5 floatsFrom:1.0000000000000000001 asQuadFloat -> false
     1 asQuadFloat isWithin:5 floatsFrom:1.000000000000000001 asQuadFloat -> false
     1 asQuadFloat isWithin:5 floatsFrom:1.00000000000000001 asQuadFloat -> false
     1 asQuadFloat isWithin:5 floatsFrom:1.0000000000000001 asQuadFloat -> false
     1 asQuadFloat isWithin:5 floatsFrom:1.000000000000001 asQuadFloat -> false

Compatibility-Squeak
o  arcCosH
sigh: arc instead of area

o  arcCosh
sigh: arc instead of area

o  arcCotH
sigh: arc instead of area

o  arcCoth
sigh: arc instead of area

o  arcCscH
sigh: arc instead of area

o  arcCsch
sigh: arc instead of area

o  arcSecH
sigh: arc instead of area

o  arcSech
sigh: arc instead of area

o  arcSinH
sigh: arc instead of area (which is wrong, but seems to be used)

o  arcSinh
sigh: arc instead of area (which is wrong, but seems to be used)

o  arcTanH
sigh: arc instead of area

o  arcTanh
sigh: arc instead of area

o  asDuration
( an extension from the stx:libcompat package )
return an TimeDuration object from the receiver, taking the receiver
as number of seconds

o  asSmallAngleDegrees
( an extension from the stx:libcompat package )
Return the receiver normalized to lie within the range (-180, 180)

Usage example(s):

     #(-500 -300 -150 -5 0 5 150 300 500 1200)
        collect: [:n | n asSmallAngleDegrees]

o  cosH
sigh: upper vs. lowercase trailing H"

o  cotH
sigh: upper vs. lowercase trailing H"

o  cscH
sigh: upper vs. lowercase trailing H"

o  newTileMorphRepresentative
( an extension from the stx:libcompat package )

o  secH
sigh: upper vs. lowercase trailing H"

o  sinH
sigh: upper vs. lowercase trailing H"

o  sqrtWithErrorLessThan: epsilon
( an extension from the stx:libcompat package )
compute the square root, using the Newton method.
The approximated return value has an error less than the given epsilon.
Notice, that there is no speed advantage using this with Floats or Integers
within the float range (actually, there is quite a disavantage)

Usage example(s):

     (2 asFixedPoint:4) sqrtWithErrorLessThan:0.001

o  stringForReadout
( an extension from the stx:libcompat package )

o  tanH
sigh: upper vs. lowercase trailing H"

Javascript support
o  js_typeof
( an extension from the stx:libjavascript package )
return a string describing what I am

o  toExponential
( an extension from the stx:libjavascript package )
return a string representing the number in exponential notation.
For full compatibility, return a plus in front of the exponent-character

Usage example(s):

     JavaScriptParser evaluate:'(new Number(10000)).toExponential()'   
     JavaScriptParser evaluate:'(new Number(1.23456)).toExponential()'  
     JavaScriptParser evaluate:'(new Number(1.23456e-5)).toExponential()'  

o  toExponential: nDigitsAfter
( an extension from the stx:libjavascript package )
return a string representing the number in exponential notation with nDigitsAfter
fractional digits

o  toExponential: nDigits _: nDigitsAfter
( an extension from the stx:libjavascript package )
return a string representing the number in exponential notation

o  toFixed
( an extension from the stx:libjavascript package )
return a string representing the number in fixed notation

Usage example(s):

     JavaScriptParser evaluate:'(new Number(10000)).toFixed()'
     JavaScriptParser evaluate:'(new Number(12.345)).toFixed()'

o  toFixed: nDigits
( an extension from the stx:libjavascript package )
return a string representing the number in fixed notation

approximation series
o  arcSin_withAccuracy: epsilon
compute the arcSine of the receiver using a power series approx.

o  arcTan_withAccuracy: epsilon
compute the arcTangent of the receiver using a taylor series approx.
Warning: this converges very slow

Usage example(s):

     1.0 arcTan                       0.785398
     1q arcTan                        0.785398163

     1q arcTan_withAccuracy:1         0.666666667
     1q arcTan_withAccuracy:0.1       0.744011544
     1q arcTan_withAccuracy:0.01      0.790299653
     1q arcTan_withAccuracy:0.001     0.785897165
     1q arcTan_withAccuracy:1e-8      0.785398168
     1q arcTan_withAccuracy:1e-20     -- not yet, converges very slow

     wolfram:
        0.4636476090008061162142562314612144020285370542861202638109330887...

     0.5 arcTan                         0.463647609000806
     0.5q arcTan                        0.4636476090008061162

     0.5q arcTan_withAccuracy:1         0.458333333
     0.5q arcTan_withAccuracy:0.1       0.458333333
     0.5q arcTan_withAccuracy:0.01      0.4645833333333333333
     0.5q arcTan_withAccuracy:0.001     0.4636842757936507937
     0.5q arcTan_withAccuracy:1e-8      0.4636476080325976761
     0.5q arcTan_withAccuracy:1e-20     0.4636476090008061161
     0.5q arcTan_withAccuracy:1e-30     0.4636476090008061161

     0.5 asLargeFloat arcTan_withAccuracy:1e-30  0.463647609001
     (0.5 asLargeFloatPrecision:200) arcTan_withAccuracy:1e-50     0.463647609001
     (0.5 asLargeFloatPrecision:1000) arcTan_withAccuracy:1e-100   0.463647609001

o  cbrt_withAccuracy: epsilon
compute the cubic root of the receiver using a newton approx.

Usage example(s):

     8q cbrt                                         2.0
     8q cbrt_withAccuracy:0.01                       2.000004911675504018
     8q cbrt_withAccuracy:0.0001                     2.000000000012062239
     8q cbrt_withAccuracy:0.0000001                  2.0
     8q cbrt_withAccuracy:0.0000000001               2.0
     8q cbrt_withAccuracy:0.000000000001             2.0
     8q cbrt_withAccuracy:LongFloat epsilon          2.0
     8q asQDouble cbrt_withAccuracy:QDouble epsilon  2.0

     27q cbrt_withAccuracy:0.01                      3.000000541064176501
     27q cbrt_withAccuracy:LongFloat epsilon         3.0
     -27q cbrt_withAccuracy:LongFloat epsilon        -3.0

     MessageTally spyOn:[ |arg|
        arg := 2 asLongFloat.
        1000000 timesRepeat:[
             arg cbrt_withAccuracy:0.000000000001
        ]
     ]
     Time millisecondsToRun:[ |arg|
        arg := 2 asLongFloat.
        1000000 timesRepeat:[
             arg cbrt_withAccuracy:0.000000000001
        ]
     ]

o  cbrt_withAccuracy: epsilon fromInitialGuess: guess
compute the cubic root of the receiver using a newton approx.

Usage example(s):

     8q cbrt                                         2.0
     8q cbrt_withAccuracy:0.01                       2.000004911675504018
     8q cbrt_withAccuracy:0.0001                     2.000000000012062239
     8q cbrt_withAccuracy:0.0000001                  2.0
     8q cbrt_withAccuracy:0.0000000001               2.0
     8q cbrt_withAccuracy:0.000000000001             2.0
     8q cbrt_withAccuracy:LongFloat epsilon          2.0
     8q asQDouble cbrt_withAccuracy:QDouble epsilon  2.0

     27q cbrt_withAccuracy:0.01                      3.000000541064176501
     27q cbrt_withAccuracy:LongFloat epsilon         3.0
     -27q cbrt_withAccuracy:LongFloat epsilon        -3.0

     MessageTally spyOn:[ |arg|
        arg := 2 asLongFloat.
        1000000 timesRepeat:[
             arg cbrt_withAccuracy:0.000000000001
        ]
     ]
     Time millisecondsToRun:[ |arg|
        arg := 2 asLongFloat.
        1000000 timesRepeat:[
             arg cbrt_withAccuracy:0.000000000001
        ]
     ]

o  cos_withAccuracy: epsilonWanted
compute the cosine of the receiver using a taylor series approx.

Usage example(s):

     1.0 cos                                    0.540302
     1.0 asLongFloat cos                        0.5403023058681397174
     1.0 asLongFloat cos_withAccuracy:1         0.5
     1.0 asLongFloat cos_withAccuracy:0.1       0.541666667
     1.0 asLongFloat cos_withAccuracy:0.01      0.540277778
     1.0 asLongFloat cos_withAccuracy:0.001     0.540302579

     1.0 asLongFloat cos_withAccuracy:1e-40     0.5403023058681397175
     1.0 asQDouble cos                          0.5403023058681396874081335957994

     (1.0 asLargeFloatPrecision:200) cos   
            0.54030230586813971740093660744297660373231042061792222767009838
     Wolfram:
            0.5403023058681397174009366074429766037323104206179222276700972553......

o  cosh_withAccuracy: epsilonWanted
compute the hyperbolic cosine of the receiver using a power series approx.

Usage example(s):

     1.0 cosh                                    1.54308
     1.0q cosh_withAccuracy:1         1.5
     1.0q cosh_withAccuracy:0.1       1.54308
     1.0q cosh_withAccuracy:0.01      1.54308
     1.0q cosh_withAccuracy:0.001     1.54308

     1.0q cosh_withAccuracy:1e-40   -> 1.543080

     (1.0 asLargeFloatPrecision:200) cosh_withAccuracy:1e-80     
            1.543080634815243778477905620757061682601529112365863704737399
       Wolfram:
            1.5430806348152437784779056207570616826015291123658637047374022147...

     (10.0 asLargeFloatPrecision:200) cosh_withAccuracy:1e-80        
            11013.2329201033231397213760904378799634520614282374349704002
        Wolfram:
            11013.232920103323139721376090437879963452061428237434970400197807......

o  epsilon
return the maximum relative spacing of instances of mySelf
(i.e. the value-delta of the least significant bit).
according to ISO C standard;
Ada, C, C++ and Python language constants;
Mathematica, MATLAB and Octave; and various textbooks
see https://en.wikipedia.org/wiki/Machine_epsilon

o  erf_withAccuracy: epsilon
not a very efficient approximation here;
the approx. is inexact for larger receivers (>=7)
see eg. wikipedia

Usage example(s):

     0.0 erf                        0.0
     0.0 erf_withAccuracy:1e-40     -3.00000007058543e-08

     0.1 erf                        0.112462916018285
     0.1 erf_withAccuracy:1e-40     0.112462916018285

     0.2 erf                        0.222702589210478
     0.2 erf_withAccuracy:1e-40     0.222702589210478

     1.0 erf                        0.842700792949715
     1.0 erf_withAccuracy:1e-40     0.842700792949715
     -1.0 erf_withAccuracy:1e-40    -0.842700792949715

     2.0 erf                        0.995322265018953
     2.0 erf_withAccuracy:1e-40     0.995322265018953

     3.0 erf                        0.999977909503001
     3.0 erf_withAccuracy:1e-40     0.999977909503024
     3.0q erf_withAccuracy:1e-80    0.999977909503001429
     3.0Q erf_withAccuracy:1e-80    0.99997790950300141455862722387
     3.0QO erf_withAccuracy:1e-80   0.999977909503001414558627223870417679620152292912600750342761045160947
     3.0QL erf_withAccuracy:1e-80   0.9999779095030014145586272238704176796201522929126007503426
             wolfram:               0.9999779095030014145586272238704176796201522929126007503427610451...

     4.0 erf                        0.999999984582742
     4.0q erf                       0.9999999845827420997
     4.0 erf_withAccuracy:1e-40     0.999999984582743     

     10.0 erf                       1.0
     10.0 erf_withAccuracy:1e-40    1.0

o  exp_withAccuracy: epsilon
compute e^x of the receiver using a taylor series approximation.
This method is only invoked for limitedPrecisionReal classes, which do not compute
exp themself (i.e. QDouble)

o  ln_withAccuracy: epsilon
compute ln of the receiver using a taylor series approx.

Usage example(s):

     0.8q ln                        -0.2231435513142097003
     0.8q ln_withAccuracy:1         -0.2231367169638774022
     0.8q ln_withAccuracy:0.1       -0.2231367169638774022
     0.8q ln_withAccuracy:0.01      -0.2231367169638774022
     0.8q ln_withAccuracy:0.0000001 -0.2231435513083546378
     0.8q ln_withAccuracy:1e-10     -0.2231435513141485206
     0.8q ln_withAccuracy:1e-20     -0.2231435513142097002
     0.8q ln_withAccuracy:1e-40     -0.2231435513142097002
     0.8q ln_withAccuracy:2.0q class epsilon -0.2231435513142097002

     (LargeFloat readFrom:'0.8' precision:400) ln   -0.22314355131420975576629509030983450337460108554800721367128787248739174376826833341840722410034223571596334098057419143246                      
                                        Wolfram says:
                                                    -0.2231435513142097557662950903098345033746010855480072136712878724873917437682683334184072241003422357159633409805741914323529...

     2.0 ln                                  0.693147180559945
     2.0q ln                                 0.6931471805599453094

     2.0q ln_withAccuracy:1                  0.6949363364285325478
     2.0q ln_withAccuracy:0.1                0.6949363364285325478
     2.0q ln_withAccuracy:0.01               0.6932902458935531239
     2.0q ln_withAccuracy:0.0000001          0.6931471815716492569
     2.0q ln_withAccuracy:1e-10              0.6931471805609741798
     2.0q ln_withAccuracy:1e-20              0.693147180559945263
     2.0q ln_withAccuracy:1e-40              0.693147180559945263
     2.0q ln_withAccuracy:2.0q class epsilon 0.693147180559945263

     0 ln_withAccuracy:1e-40    -> error

     0.8q negated ln                         error
     Number trapImaginary:[0.8q negated ln ] (-0.2231435513142097003+3.14159265358979i)

     (2 ln_withAccuracy:1e-100) asFixedPoint:100
     (2 asFixedPoint:200) ln_withAccuracy:(1/(10 raisedTo:200))
        0.69314718055994530941723212145817656807550013436025525412068000949339362196969471560586332699641868754200148102057068573368552023575813055703267075163507596193072757082837143519030703862389167347112335

     (2 asFixedPoint:400) ln_withAccuracy:(1/(10 raisedTo:400))
        0.69314718055994530941723212145817656807550013436025525412068000949339362196969471560586332699641868754200148102057068573368552023575813055703267075163507596193072757082837143519030703862389167347112335 01153644979552391204751726815749320651555247341395258829504530070953263666426541042391578149520437404303855008019441706416715186447128399681717845469570262716310645461502572074024816377733896385506953

     (2.0 asQDouble ln_withAccuracy:QDouble epsilon) printfPrintString:'%60.58f'
        0.69314718055994 52709398341558750792990469129794959648865081'
       '0.6931471805599452245588978789490895638089716177573625053064'
     Wolfram says:
        0.69314718055994530941723212145817656807550013436025525412068000949339362196969471560586332699641868754200148102057068573368552023575813055703267075163507596193072757082837143519030703862389167347112335 01153644979552391204751726...

o  noConvergenceError: fnName

o  nthRoot: n withAccuracy: epsilon
compute nth root of the receiver using a newton approx.

Usage example(s):

     8q nthRoot:3 withAccuracy:0.01               2.00000002488636242
     8q nthRoot:3 withAccuracy:0.0001             2.00000000000000031
     8q nthRoot:3 withAccuracy:0.0000001          2.00000000000000031
     8q nthRoot:3 withAccuracy:0.0000000001       2.0
     8q nthRoot:3 withAccuracy:0.000000000001     2.0
     8q nthRoot:3 withAccuracy:LongFloat epsilon  2.0

     27q nthRoot:3 withAccuracy:0.01                3.000000081210202031
     27q nthRoot:3 withAccuracy:LongFloat epsilon   3.0
     -27q nthRoot:3 withAccuracy:LongFloat epsilon  -3.0

     10000q nthRoot:5 withAccuracy:1e-18        -> 6.309573444801932495
     100000q nthRoot:5 withAccuracy:1e-18       -> 10.0

     (10000 asQDouble nthRoot:5) printfPrintString:'%70.68f'
               6.30957344480193249434360136622343864672945257188228724527729528834741'

     actual result (Mathematica):
               6.309573444801932494343601366223438646729452571882287245277...

o  sin_withAccuracy: epsilonWanted
compute the sine of the receiver using a taylor series approx.

Usage example(s):

     0.0 asOctaFloat sin             0.0
     0.0 asQuadFloat sin             0.0
     0.0 asIEEEFloat sin             0.0

     1.0 sin                         0.841470984807897
     1.0q sin                        0.8414709848078965067

     1.0q sin_withAccuracy:1         0.8416666666666666666
     1.0q sin_withAccuracy:0.1       0.8416666666666666666
     1.0q sin_withAccuracy:0.01      0.8416666666666666666
     1.0q sin_withAccuracy:0.001     0.8414682539682539682

     1.0q sin_withAccuracy:1e-20     
     1.0q sin_withAccuracy:1e-40     0.8414709848078965066
     1.0q sin_withAccuracy:1e-80     0.8414709848078965066 
     1.0q sin_withAccuracy:1e-80     0.8414709848078965066 
     (1.0 asLargeFloatPrecision:200) sin_withAccuracy:1e-80     
                0.8414709848078965066525023216302989996225630607983710656727508
            wolfram:
                0.8414709848078965066525023216302989996225630607983710656727517099...

o  sinh_withAccuracy: epsilonWanted
compute the hyperbolic sine of the receiver using a power series approx.

Usage example(s):

     10 sinh                        11013.2328747034
     10 asQuadFloat sinh            11013.2329
     10 asOctaFloat sinh            11013.232875

     100 sinh                       1.34405857090807e+43
     100 asQuadFloat sinh           1.34405857e43
     100 asOctaFloat sinh           1.3440585709e43

     1000 asLongFloat sinh          9.850355570085235467e+433
     1000 asQuadFloat sinh          out of range error
     1000 asOctaFloat sinh          out of range error

     1.0 asShortFloat sinh          1.1752011936438
     1.0 sinh                       1.1752011936438
     1q sinh                        1.175201193643801457
     1.0 asLongFloat sinh           1.175201193643801457
     1.0 asQuadFloat sinh           1.17520119
     1.0 asOctaFloat sinh           1.1752011936
     (1.0 asLargeFloatPrecision:200) sinh 1.175201193644

     1q sinh_withAccuracy:1         1.16666667
     1q sinh_withAccuracy:0.1       1.175
     1q sinh_withAccuracy:0.01      1.175
     1q sinh_withAccuracy:0.001     1.17519841

     1q sinh_withAccuracy:1e-40     1.17520119

     (1.0 asLargeFloatPrecision:200) sinh_withAccuracy:1e-80     
                1.175201193643801456882381850595600815155717981334095870229565
            wolfram:
                1.1752011936438014568823818505956008151557179813340958702295654130...

     (10.0 asLargeFloatPrecision:200) sinh_withAccuracy:1e-80     
                11013.23287470339337723652455484636440290145119031934610383517
            wolfram:
                11013.232874703393377236524554846364402901451190319346103835228548...

o  sqrt_withAccuracy: epsilon
compute square root of the receiver using newton-raphson/heron algorithm

Usage example(s):

     2 sqrt                                  1.4142135623731      - computed by CPU/FPU
     200000000 sqrt

     2q sqrt                                 1.414213562373095049 - computed by CPU/FPU

     2q sqrt_withAccuracy:0.01               1.414215686274509804 - computed by Smalltalk
     2q sqrt_withAccuracy:0.0001             1.414213562374689911
     2q sqrt_withAccuracy:0.0000001          1.414213562373095049
     2q sqrt_withAccuracy:0.0000000001       1.414213562373095049
     2q sqrt_withAccuracy:0.000000000001     1.414213562373095049

     2q sqrt_withAccuracy:LongFloat epsilon  1.414213562373095049

     (2 asFixedDecimal:300) sqrt             1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641572735013846230912297024924836055850737212644121497099935831413222665927505592755799950501152782060571470109559971605970274534596862014728517418640889198609552329230484308714321450839762603627995251407990

     (4 sqrt_withAccuracy:Integer epsilon) asFloat

     MessageTally spyOn:[ |arg|
        arg := 2 asLongFloat.
        1000000 timesRepeat:[
             arg sqrt_withAccuracy:0.000000000001
        ]
     ]
     Time millisecondsToRun:[ |arg|
        arg := 2 asLongFloat.
        1000000 timesRepeat:[
             arg sqrt_withAccuracy:0.000000000001
        ]
     ]

o  sqrt_withAccuracy: epsilon fromInitialGuess: guess
compute square root of the receiver using newton-raphson/heron algorithm

Usage example(s):

     2 sqrt                                  1.4142135623731
     2q sqrt                                 1.414213562373095049
     2q sqrt_withAccuracy:0.01               1.414215686274509804
     2q sqrt_withAccuracy:0.0001             1.414213562374689911
     2q sqrt_withAccuracy:0.0000001          1.414213562373095049
     2q sqrt_withAccuracy:0.0000000001       1.414213562373095049
     2q sqrt_withAccuracy:0.000000000001     1.414213562373095049
     2q sqrt_withAccuracy:LongFloat epsilon  1.414213562373095049

     (2 asQDouble sqrt_withAccuracy:LongFloat epsilon) printfPrintString:'%70.68f'
	    1.41421356237309504880168872420969807856967187537723400156101313309966

     (4 sqrt_withAccuracy:Integer epsilon) asFloat

     -2q sqrt_withAccuracy:0.0000001                        -> error
     Number trapImaginary:[-2q sqrt_withAccuracy:0.0000001] -> (0+1.414213562373095049i)

     MessageTally spyOn:[ |arg|
	arg := 2 asLongFloat.
	1000000 timesRepeat:[
	     arg sqrt_withAccuracy:0.000000000001
	]
     ]
     Time millisecondsToRun:[ |arg|
	arg := 2 asLongFloat.
	1000000 timesRepeat:[
	     arg sqrt_withAccuracy:0.000000000001
	]
     ]

o  tan_withAccuracy: epsilon
compute the tangens of the receiver using a taylor series approx.

Usage example(s):

     0.5 tan                         0.546302
     0.5q tan                        0.54630249

     0.5q tan_withAccuracy:1         0.541666667
     0.5q tan_withAccuracy:0.1       0.541666667
     0.5q tan_withAccuracy:0.01      0.545833333
     0.5q tan_withAccuracy:0.001     0.54625496
     0.5q tan_withAccuracy:1e-15     0.54630249

     0.5q tan_withAccuracy:1e-40     0.5463024898437905132 
     (0.5 asLargeFloatPrecision:100) tan 
        0.54630248984379051325517946577959
     (0.5 asLargeFloatPrecision:200) tan 
        0.54630248984379051325517946578028538329755172017979124616408949

     (0.5 asLargeFloatPrecision:400) tan 
        0.546302489843790513255179465780285383297551720179791246164091385 83432359047976386453016147931027794804955641807727198401039

     wolfram:
        0.546302489843790513255179465780285383297551720179791246164091385 9329075105180258157151806482706562185891048626002641142654932300...

     (0.1 asLargeFloatPrecision:400) tan   
        0.10033467208545055066507850254801492712782258228855078633976653427797263386206757470626911032620832439612609916501210025027
     (0.1 asQuadFloat) tan 
        0.1003346721  
     (0.1 asOctaFloat) tan 
        0.100334672085
     (0.1 asQDouble) tan 
        0.10033467209

o  ulp
answer the distance between me and the next representable number;
mhmh this really ought to be redefined;
I am not sure if this makes a good fallback default

Usage example(s):

     1.0 asShortFloat ulp               1.192093e-07
     1.0 asShortFloat asIEEEFloat ulp   
     10.0 asShortFloat asIEEEFloat ulp

     PrintfScanf printf:'%g' on:Transcript argument:10.0 asShortFloat
     PrintfScanf printf:'%g' on:Transcript argument:10.0 asShortFloat asIEEEFloat

coercing & converting
o  i
return a complex number, with the receiver as imaginary part, 0 as real part

Usage example(s):

     3i     -> (0+3i)
     (1+1i) -> (1+1i)

Usage example(s):

Modified (format): / 22-09-2017 / 09:53:27 / cg

o  i: aNumber
Form a complex number with
receiver as realPart
aNumber as imaginaryPart
this is the same as (self + aNumber i) but a little bit more efficient.

Usage example(s):

     3i      -> (0+3i)
     (1+1i)  -> (1+1i)
     0 i:2   -> (0+2i)
     (1 i:2) -> (1+2i)

comparing
o  closeFrom: aNumber
are these two numbers close?
Notice, that this is definitely not the best way to compensate
for rounding errors - see isAlmostEqualTo:aNumber nEpsilon:nE
(or at least, use closeFrom:withEpsilon:,
where the epsilon is given as arg)

o  closeFrom: aNumber withEpsilon: eps
are these two numbers close?
That is, within the given epsilon.
Notice, that this is probably not the best way to compensate
for rounding errors - see isAlmostEqualTo:aNumber nEpsilon:nE
(although it is useful to determine if a measured value
is within its spec)

o  closeTo: num
are these two numbers close to each other?
Notice, that this is definitely not the best way to compensate
for rounding errors - see isAlmostEqualTo:aNumber nEpsilon:nE
(or at least, use closeFrom:withEpsilon:,
where the epsilon is given as arg)

Usage example(s):

     1 closeTo:1.0000000001
     1 closeTo:1.001
     1 closeTo:1.001 withEpsilon:0.001

o  closeTo: num withEpsilon: eps
are these two numbers close to each other?
Notice, that this is probably not the best way to compensate
for rounding errors - see isAlmostEqualTo:aNumber nEpsilon:nE
(although it is useful to determine if a measured value
is within its spec)

Usage example(s):

     1 closeTo:1.0000000001
     1 closeTo:1.001

     1 closeTo:1.001 withEpsilon:0.1
     1 closeTo:1.201 withEpsilon:0.1

     3.14 closeTo:(3.14 asFixedPoint:2)
     (3.14 asFixedPoint:2) closeTo:3.14

o  epsilonForCloseTo
return the epsilon used in the closeTo: comparison.
Here, we return the receiver's magnitude divided by 10000

Usage example(s):

     1.0 epsilonForCloseTo                           
     10 asShortFloat epsilonForCloseTo      
     10000 asShortFloat epsilonForCloseTo      

o  isAlmostEqualTo: aNumber
return true, if the receiver, is inside the interval
aNumber-epsilon(aNumber) .. aNumber+epsilon(aNumber).
Err should be a fraction of 0..1.

Usage example(s):

     Float pi isAlmostEqualTo:3.14159            -> false
     Float pi isAlmostEqualTo:3.141592653589792  -> false
     Float pi isAlmostEqualTo:3.141592653589793  -> true
     Float pi isAlmostEqualTo:3.141592653589794  -> true
     Float pi isAlmostEqualTo:3.141592653589795  -> false
     Float pi isAlmostEqualTo:3.141592653589799  -> false
     LongFloat pi isAlmostEqualTo:3.141592653589793q    -> false
     LongFloat pi isAlmostEqualTo:3.141592653589793239q -> true
     (-1/2) isAlmostEqualTo:(-1/2)               -> true

o  isAlmostEqualTo: aNumber nEpsilon: nE
return true, if the argument, aNumber represents almost the same numeric value
as the receiver, false otherwise.

nE is the number of minimal float distances, that the numbers may differ and
still be considered equal.
See documentation in LimitedPrecisionReal for more detail.

For background information why floats need this
read: http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

o  isAlmostEqualTo: aNumber withError: errFraction
return true, if the receiver, is inside the interval
aNumber-err .. aNumber+err
where err is a fraction of aNumber.
Err should be a fraction of 0..1.

Usage example(s):

     within 50%?
     15 isAlmostEqualTo:10 withError:0.5 -> true    i.e. (10 ± 50%)
     5 isAlmostEqualTo:10 withError:0.5  -> true    i.e. (10 ± 50%)

     20 isAlmostEqualTo:10 withError:1 -> true      i.e. (10 ± 100%)
     0 isAlmostEqualTo:10 withError:1  -> true      i.e. (10 ± 100%)  

     within 10%?
     10.5 isAlmostEqualTo:10 withError:0.1 -> true  i.e. (10 ± 10%) 

     within 1%
     10.5 isAlmostEqualTo:10 withError:0.01 -> false   i.e. (10 ± 1%) 
     10.3 isAlmostEqualTo:10 withError:0.01 -> false   i.e. (10 ± 1%) 
     10.2 isAlmostEqualTo:10 withError:0.01 -> false   i.e. (10 ± 1%) 
     10.1 isAlmostEqualTo:10 withError:0.01 -> true    i.e. (10 ± 1%) 
     10.05 isAlmostEqualTo:10 withError:0.01 -> true   i.e. (10 ± 1%) 
     9.9   isAlmostEqualTo:10 withError:0.01 -> true   i.e. (10 ± 1%) 
     9.8   isAlmostEqualTo:10 withError:0.01 -> false   i.e. (10 ± 1%) 

     within 0.1%
     10.5  isAlmostEqualTo:10 withError:0.001 -> false   i.e. (10 ± 0.1%) 
     10.07 isAlmostEqualTo:10 withError:0.001 -> false     i.e. (10 ± 0.1%)   
     10.06 isAlmostEqualTo:10 withError:0.001 -> false     i.e. (10 ± 0.1%)   
     10.05 isAlmostEqualTo:10 withError:0.001 -> false     i.e. (10 ± 0.1%)   
     10.04 isAlmostEqualTo:10 withError:0.001 -> false     i.e. (10 ± 0.1%)   
     10.03 isAlmostEqualTo:10 withError:0.001 -> false     i.e. (10 ± 0.1%)   
     10.02 isAlmostEqualTo:10 withError:0.001 -> false     i.e. (10 ± 0.1%)   
     10.01 isAlmostEqualTo:10 withError:0.001 -> true     i.e. (10 ± 0.1%)   
     10.005 isAlmostEqualTo:10 withError:0.001 -> true     i.e. (10 ± 0.1%)   
      9.99 isAlmostEqualTo:10 withError:0.001 -> true     i.e. (10 ± 0.1%)   
      9.98 isAlmostEqualTo:10 withError:0.001 -> false     i.e. (10 ± 0.1%)   

     within 0.1%
     Float pi isAlmostEqualTo:3.14159 withError:1e-5  -> true
     Float pi isAlmostEqualTo:3.14159 withError:1e-6  -> true
     Float pi isAlmostEqualTo:3.14159 withError:1e-7  -> false
     Float pi isAlmostEqualTo:3.141592653589793 withError:(Float pi epsilon) -> true

o  isEqual: aNumber within: accuracy
return true, if the distance between the receiver
and aNumber is <= accuracy.
Here accuracy is an absolute value

o  lexicographicalLessThan: aNumber
redefined for complex numbers

constants
o  halfPi
return Pi/2 in my representation (and accuracy).

o  halfPiNegative
return -Pi/2 in my representation (and accuracy).

o  halfpi
obsolete name for backward compatibility
return Pi/2 in my representation (and accuracy).

o  halfpiNegative
obsolete name for backward compatibility
return -Pi/2 in my representation (and accuracy).

o  pi
return Pi in my representation (and accuracy).

converting
o  +-% errorPercentage
return a MeasurementValue with a given relative error (percentage).

Usage example(s):

     (100 +-% 5)

o  +/- anAbsoluteError
return a MeasurementValue with a given absolute error.

Usage example(s):

     (100 +/- 5) * 2
     (100 +/- 5) * (100 +/- 10)
     (100 +/- 5) + (100 +/- 10)
     (100 +/- 5) - (100 +/- 10)

o  @ aNumber
return a Point with the receiver as x-coordinate and the argument
as y-coordinate

o  asComplex
Return a complex number with the receiver as the real part and
zero as the imaginary part

o  asFixedDecimal: scale
( an extension from the stx:libbasic2 package )
return a fixedDecimal approximating the receiver's value
to scale fractional digits

Usage example(s):

     (1/3) asFixedDecimal:2   0.33
     (2/3) asFixedDecimal:2   0.67
     (1/3) asFixedDecimal:5   0.33333
     (2/3) asFixedDecimal:5   0.66667

o  asFloatChecked
Convert to a IEEE 754 double precision floating point.
Raises an error if the result cannot be represented as a float or is non-finite.
If the error is proceeded, you'll get a NaN or Inf

Usage example(s):

     1000 factorial asLargeFloat asFloat        -> inf
     1000 factorial asLargeFloat asFloatChecked -> error
     DomainError ignoreIn:[ 1000 factorial asLargeFloat asFloatChecked ] -> inf

     1q1000 asFloat        -> inf
     1q1000 asFloatChecked -> error
     DomainError ignoreIn:[ 1q1000 asFloatChecked ] -> inf

     (1q / 1q1000) asFloat         -> 0.0
     (1q / 1q1000) asFloatChecked  
     DomainError ignoreIn:[ (1q / 1q1000) asFloatChecked ] -> 0.0

o  asIntegerChecked
return an integer with same value - might truncate.
Raises an error for non-finite numbers (NaN or INF).
If the error is proceeded, you'll get a NaN or Inf

o  asLargeFloatDecimalPrecision: numDigits
Convert to a large float with numDigits precision.

Usage example(s):

     10000 factorial asLargeFloatDecimalPrecision:100

o  asLargeFloatPrecision: numBits
Convert to a large float with numBits precision.

** This method must be redefined in concrete classes (subclassResponsibility) **

o  asLongFloatChecked
Convert to a IEEE 754 extended precision floating point.
Raises an error if the result cannot be represented as a long float or is non-finite.
If the error is proceeded, you'll get a NaN or Inf.

Usage example(s):

     10000 factorial asLargeFloat asLongFloat        -> inf
     10000 factorial asLargeFloat asLongFloatChecked -> error

o  asMetaNumber
by mapping all onto someNumber, we can doubleDispatch

Usage example(s):

     Float NaN asMetaNumber
     Float infinity asMetaNumber
     Float negativeInfinity asMetaNumber

o  asNumber
I am a number, so return myself

o  asOctaFloatChecked
( an extension from the stx:libbasic2 package )
Convert to a IEEE 754 octuple precision floating point.
Raises an error if the result cannot be represented as a quad float.

Usage example(s):

     1000 factorial asFloat              -> INF
     10000 factorial asFloat             -> INF
     10000 factorial negated asFloat     -> -INF

     1000 factorial asQuadFloat          -> 4.023872601e2567
     10000 factorial asQuadFloat         -> inf
     10000 factorial negated asQuadFloat -> -inf
     10000 factorial asOctaFloat         -> 2.84625968092e35659

     1000 factorial asFloatChecked       -> error
     10000 factorial asQuadFloatChecked  -> error
     10000 factorial asOctaFloatChecked  -> error
     1000 factorial asLargeFloat asFloatChecked -> inf
     1q1000 asFloatChecked -> inf

o  asPercentFrom: fullAmount
what is the percentage
taking the receiver's value from the argument.
i.e. how many percent of aHundredPercentValue is the receiver

Usage example(s):

     (20 asPercentFrom:100) = 20 
     (20 asPercentFrom:200) = 10 
     (120 asPercentFrom:100) = 120     

     (5 asPercentFrom:1000) = 0.5        
     (5 asPercentFrom:10)   = 50  

     (10 asPercentFrom:156) asFixedPoint:2
     (15.6 asPercentFrom:156) asFixedPoint:2

o  asPoint
return a new Point with the receiver as all coordinates;
often used to supply the same value in two dimensions, as with
symmetrical gridding or scaling.

o  asQDoubleChecked
( an extension from the stx:libbasic2 package )
Convert to a QDouble.
Raises an error if the result cannot be represented as such.

Usage example(s):

     1000 factorial asLargeFloat asQDouble        -> inf
     1000 factorial asLargeFloat asQDoubleChecked -> error
     1q1000 asQDouble        -> 1E+1000
     1q1000 asQDoubleChecked -> error

o  asQuadFloatChecked
( an extension from the stx:libbasic2 package )
Convert to a IEEE 754 quadruple precision floating point.
Raises an error if the result cannot be represented as a quad float.

Usage example(s):

     1000 factorial asFloat              -> INF
     10000 factorial asFloat             -> INF
     10000 factorial negated asFloat     -> -INF

     1000 factorial asQuadFloat          -> 4.023872601e2567
     10000 factorial asQuadFloat         -> inf
     10000 factorial negated asQuadFloat -> -inf
     10000 factorial asOctaFloat         -> 2.84625968092e35659

     1000 factorial asFloatChecked       -> error
     10000 factorial asQuadFloatChecked  -> error
     10000 factorial asOctaFloatChecked  -> error
     1000 factorial asLargeFloat asFloatChecked -> inf
     1q1000 asFloatChecked -> inf

o  asShortFloatChecked
Convert to a IEEE 754 single precision floating point.
Raises an error if the result cannot be represented as a short float or is non-finite.
If the error is proceeded, you'll get a NaN or Inf.

Usage example(s):

     1000 factorial asShortFloat        -> inf
     1000 factorial asShortFloatChecked -> error
     1q1000 asShortFloatChecked         -> error
     -1q1000 asShortFloatChecked        -> error

o  asTimeDuration
return an TimeDuration object from the receiver,
taking the receiver as number of seconds

Usage example(s):

     5 asTimeDuration
     50.25 asTimeDuration
     3600 asTimeDuration
     '5m' asTimeDuration

o  asTruncatedMilliseconds
compatibility with TimeDuration.
Convert a number representing seconds to milliseconds.
Values smaller than 1 ms (0.001) will be returned as 0.

Usage example(s):

     5 asTruncatedMilliseconds      => 5000
     50.25 asTruncatedMilliseconds  => 50250
     (3/4) asTruncatedMilliseconds  => 750
     0.0025 asTruncatedMilliseconds => 2
     0.0015 asTruncatedMilliseconds => 1
     0.0007 asTruncatedMilliseconds => 0

o  degreesToRadians
interpreting the receiver as degrees, return the radians

Usage example(s):

     180 degreesToRadians             
     Float pi radiansToDegrees        
     180 asLongFloat degreesToRadians       
     180 asQuadFloat degreesToRadians       
     180 asLargeFloat degreesToRadians       

o  literalArrayEncoding
encode myself as an array literal, from which a copy of the receiver
can be reconstructed with #decodeAsLiteralArray.

o  percentOf: hundredPercent
how many is self-percent from the argument

Usage example(s):

     20 percentOf:100                   => 20
     20 percentOf:6                     => (6/5)
     (20 percentOf:6) asFixedPoint:2    => 1.20       
     (10 percentOf:156) asFixedPoint:2  => 15.60
     (105 percentOf:156) asFixedPoint:2 => 163.80

o  radiansToDegrees
interpreting the receiver as radians, return the degrees

Usage example(s):

     180 degreesToRadians radiansToDegrees              
     180 asLongFloat degreesToRadians radiansToDegrees
     180 asLargeFloat degreesToRadians radiansToDegrees
     LongFloat pi radiansToDegrees   
     LargeFloat pi radiansToDegrees

o  withScale: newScale
return a fixedPoint number representing the same value as the receiver,
with newScale number of post-decimal digits

Usage example(s):

     1234 withScale:2
     1234.1 withScale:2
     1234.12 withScale:2
     1234.123 withScale:2
     (1/7) withScale:2

o  ± anError
return a MeasurementValue with a given absolute error.
Same as +/-

Usage example(s):

     (100 ± 5) * 2            -> (200 ± 10)
     (100 ± 5) * (100 +/- 10) -> (MeasurementValue value:10000 minValue:(8550) maxValue:(11550))
     (100 ± 5) + (100 +/- 10) -> (200 ± 15)
     (100 ± 5) - (100 +/- 10) -> (0 ± 15)
     (100 ± 5) ± 10           -> (100 ± 15)

o  ±% anErrorPercentage
return a MeasurementValue with a given relative error (percentage).
Same as +-%

Usage example(s):

     (100 ±% 5)                 -> (100 ± 5) 
     (50 ±% 5.0)                -> (50 ± 2.5)
     (50 ±% 10) * 2             -> (100 ± 10)
     (100 ±% 5) + (100 ±% 10)   -> (200 ± 15)
     (100 ±% 5) - (100 ±% 10)   -> (0 ± 15)
     (100 ±% 5) * (100 ±% 10)   -> (MeasurementValue value:10000 minValue:8550 maxValue:11550)

     (100 ±% 5) ± 10            -> (100 ± 15)
     (100 ±% 10) ±% 10          ->

converting-times
o  days
return a TimeDuration representing this number of days

Usage example(s):

     1000 milliseconds
     10 seconds
     10 minutes
     1 days

o  hours
return a TimeDuration representing this number of hours

o  microseconds
return a TimeDuration representing this number of microseconds.

Usage example(s):

     40 microseconds

o  milliSeconds
marked as obsolete by Stefan Vogel at 25-Apr-2024

** This is an obsolete interface - do not use it (it may vanish in future versions) **

o  milliseconds
return a TimeDuration representing this number of milliseconds.
Same as milliSeconds, for dialect compatibility

Usage example(s):

     1000 milliseconds

o  minutes
return a TimeDuration representing this number of minutes

Usage example(s):

     1000 milliseconds
     10 seconds
     10 minutes

o  nanoseconds
return a TimeDuration representing this number of nanoseconds.

Usage example(s):

     40.5 nanoseconds asPicoseconds
     (40.5 nanoseconds / 2) asPicoseconds

     40 nanoseconds
     40 nanoseconds asPicoseconds
     44 milliseconds asMicroseconds
     44 milliseconds

o  picoseconds
return a TimeDuration representing this number of picoseconds.

Usage example(s):

     40 picoseconds

o  seconds
return a TimeDuration representing this number of seconds

Usage example(s):

     1000 milliseconds
     10 seconds
     10 minutes

o  weeks
return a TimeDuration representing this number of weeks

Usage example(s):

     1000 milliseconds
     10 seconds
     10 minutes
     1 days
     1 weeks

o  years
return a TimeDuration representing this number of years

Usage example(s):

     1000 milliseconds
     10 seconds
     10 minutes
     1 days
     1 years 

copying
o  deepCopyUsing: aDictionary postCopySelector: postCopySelector
return a deep copy of myself
- reimplemented here since numbers are immutable

double dispatching
o  differenceFromMeasurementValue: aMeasurementValue
return the difference of aMeasurementValue and the receiver.
Care for the error to propagate into the result.

o  differenceFromPoint: aPoint
return the difference from aPoint - self

o  differenceFromTimestamp: aTimestamp
I am to be interpreted as seconds, return the timestamp this number of seconds
before aTimestamp

Usage example(s):

     100.0 differenceFromTimestamp:Timestamp now

     |t1 t2|
     t1 := Timestamp now.
     t2 := 1.5 differenceFromTimestamp:t1.
     t1 inspect. t2 inspect.

o  productFromMatrix: aMatrix
( an extension from the stx:libbasic2 package )
Answer the result of multiplying 'aMatrix' by the receiver.

o  productFromMeasurementValue: aMeasurementValue
return the product of aMeasurementValue and the receiver.
Care for the error to propagate into the result.

o  productFromPoint: aPoint
return the product of aPoint * self

o  quotientFromMatrix: aMatrix
( an extension from the stx:libbasic2 package )
Answer the result of dividing 'aMatrix' by the receiver.

o  quotientFromMeasurementValue: aMeasurementValue
return the quotient of aMeasurementValue and the receiver.
Care for the error to propagate into the result.

o  quotientFromPoint: aPoint
return the quotient of aPoint / self

o  sumFromMeasurementValue: aMeasurementValue
return the sum of aMeasurementValue and the receiver.
Care for the error to propagate into the result.

o  sumFromPoint: aPoint
return the sum of aPoint + self

o  sumFromTimestamp: aTimestamp
I am to be interpreted as seconds, return the timestamp this number of seconds
after aTimestamp

Usage example(s):

     Timestamp now + 3600    

     Timestamp now sumFromTimestamp:aTimestamp   
     100.0 sumFromTimestamp:Timestamp now 

     |t1 t2|
     t1 := Timestamp now. 
     t2 := 1.5 sumFromTimestamp:t1.
     t1 inspect. t2 inspect.

inspecting
o  inspectorValueListIconFor: anInspector
( an extension from the stx:libtool package )
returns the icon to be shown alongside the value list of an inspector

o  inspectorValueStringInListFor: anInspector
returns a string to be shown in the inspector's list

intervals
o  downTo: stop
return an interval from receiver down to the argument, incrementing by -1

Usage example(s):

     (10 downTo:1) do:[:i | Transcript showCR:i].

o  downTo: stop by: step
return an interval from receiver down to the argument, decrementing by step

Usage example(s):

     (10 downTo:1 by:0.5) do:[:i | Transcript showCR:i].

o  to: stop
return an interval from receiver up to the argument, incrementing by 1

o  to: stop by: step
return an interval from receiver up to the argument, incrementing by step

o  to: stop byFactor: factor
return a geometric series from receiver up to the argument;
elements have a constant factor in between

Usage example(s):

     (1 to:256 byFactor:2)
     (256 to:1 byFactor:1/2)

iteration
o  timesRepeat: aBlock
evaluate the argument, aBlock self times

o  timesRepeatWithExit: aOneArgBlock
evaluate the argument, aBlock self times;
pass an exit block to the one-arg-block

Usage example(s):

    10 timesRepeatWithExit:[:exit |
        Transcript showCR:'iteration'.
        (Random nextBetween:1 and:10) > 7 ifTrue:[exit value].
    ].

mathematical functions
o  agm: y
return the arithmetic-geometric mean agm(x, y) of the receiver (x) and the argument, y.
See https://en.wikipedia.org/wiki/Arithmetic-geometric_mean
and http://www.wolframalpha.com/input/?i=agm(24,+6)

o  angle
Return the radian angle for this treated as a Complex number w.o. imaginary part.

o  cbrt
return the cubic root of the receiver

o  conjugated
Return the complex conjugate of this Number.

o  erf
error function; see eg. wikipedia

o  exp
compute e**x of the receiver

o  fibPhi
3 fib
3.0 fibPhi
100 fib
100.0 fibPhi

o  floorLog: radix
return the logarithm truncated as an integer.
Similar to (and for radix 10 and positive log the same) as integerLog10

o  imaginary
Return the imaginary part of a complex number.
For non-complex numbers, zero is returned.

o  integerLog10
return the truncation of log10 of the receiver.
The same as (self log:10) floor (for positive logs).
Used eg. to find out the number of digits needed
to print a number/and for conversion to a LargeInteger.

Usage example(s):

     (10 raisedTo:100) log10                 100.0
     (10 raisedTo:100) integerLog10          100
     (10 raisedTo:100) asFloat integerLog10  100

     (10 raisedTo:1000) log10                1000.0
     (10 raisedTo:1000) integerLog10         1000
     (10 raisedTo:1000) asFloat integerLog10 INF error (float overflow)

     Number trapInfinity:[ 0.0 integerLog10 ]   -> -INF
     Number trapImaginary:[ -1.0 integerLog10 ] -> (0+1i)

o  integerLog2
return the truncation of log2 of the receiver.
The same as (self log:2) floor (for positive logs).
Used eg. to find out the number of digits needed
to print a number/and for conversion to a LargeInteger.

Usage example(s):

     (10 raisedTo:100) log2                  332.192809488736
     (10 raisedTo:100) integerLog2           332
     (10 raisedTo:100) asFloat integerLog2   332

     (10 raisedTo:1000) log2                 3321.92809488736
     (10 raisedTo:1000) integerLog2          3321
     (10 raisedTo:1000) asFloat integerLog2  INF error (float overflow)

o  integerSqrt
return the largest integer which is less or equal to the receiver's square root.

Usage example(s):

     -5.0 integerSqrt

o  ldexp: exp
multiply the receiver by an integral power of 2.
I.e. return self * (2 ^ exp).
This is also the operation to reconstruct the original float from its
mantissa and exponent: (f mantissa ldexp:f exponent) = f

Usage example(s):

     1.0 ldexp:16  -> 65536.0
     1.0 ldexp:100 -> 1.26765060022823E+30
     1 * (2 raisedToInteger:100) -> 1267650600228229401496703205376
     1 ldexp:200   -> 1606938044258990275541962092341162602522202993782792835301376
     1.0 ldexp:200 -> 1.60693804425899E+60

o  ln
return the natural logarithm of myself.
Raises an exception, if the receiver is less or equal to zero.

Usage example(s):

     (10 raisedTo:1000) ln                2302.58509299405
     (10 raisedTo:1000) asFloat ln        error - cannot represent (10 raisedTo:1000)
     (10 raisedTo:1000) asIEEEFloat ln    error - cannot represent (10 raisedTo:1000)
     (10 raisedTo:1000) asQDouble ln      error - cannot represent (10 raisedTo:1000)
     (10 raisedTo:1000) asLongFloat ln    2302.585092994045684
     (10 raisedTo:1000) asLargeFloat ln   2302.585092994045

o  log
return log base 10 of the receiver.
Alias for log:10.

o  log10
return the base-10 logarithm of the receiver.
Raises an exception, if the receiver is less or equal to zero.
Here, fallback to the general logarithm code.

Usage example(s):

     (10 raisedTo:1000) log10
     (10 raisedTo:2000) log10
     (10 raisedTo:4000) log10
     (10 raisedTo:8000) log10

     3 log10                               -> 0.477121254719662
     -3 log10                              -> error

     3.0 log10                             -> 0.477121254719662
     -3.0 log10                            -> error

     Number trapImaginary:[ -3 log10 ]     -> (0.477121254719662+1.36437635384184i)
     Number trapInfinity:[ 0 log10 ]       -> -inf

     10.0 log10                             -> 1.0
     10.0 asIEEEFloat log10                 -> 1.0
     10.0 asShortFloat log10                -> 1.0
     (10.0 asIEEEFloat:32) log10            -> 1.00000001388676
     10.0 asLongFloat log10                 -> 1.0
     10.0 asQuadFloat log10                 -> 0.999999999999997157829057521890382
     10.0 asOctaFloat log10                 -> 1.0
     10.0 asQDouble log10                   -> 1.0
     10.0 asLargeFloat log10                -> 1.00000000000001731947918415244203060865402221679687500
     (10.0 asLargeFloatPrecision:200) log10 -> 1.0000000000000000000000000000000000000000000000000000000000012446030556
                                                              
     0.1 ln                                 -2.30258509299405
     0.1 asShortFloat ln                    -2.302585
     0.1 asLongFloat ln                     -2.302585092994045629
     0.1 asQuadFloat ln                     -2.30258509299403613113099847804875
     0.1 asOctaFloat ln                     -2.30258509299404562850684022342653872716347359387638277683520000207135
     0.1 asQDouble ln                       -2.3025850929940456285068402234265387271634735938764
     0.1 asLargeFloat ln                    -2.30258509299404545700440394284669309854507446289062500

     1.0 ln                                 0.0
     1.0 asShortFloat ln                    0.0
     1.0 asLongFloat ln                     0.0
     1.0 asQuadFloat ln                     1.05703092019725275463315554170128e-14
     1.0 asOctaFloat ln                     1.901692606553609597176915051086436273943331551609219019812349126886455e-70
     1.0 asQDouble ln                       0.0
     1.0 asLargeFloat ln                    0.00000000000004243371000881944264563316903763309556521
     1.0 asLargeFloat log10                 -> 1.0

     1.1 ln                                 0.0953101798043249
     1.1 asShortFloat ln                    0.0953102
     1.1 asLongFloat ln                     0.09531017980432494079
     1.1 asQuadFloat ln                     0.0953101798043328539871388774360559
     1.1 asOctaFloat ln                     0.09531017980432494078744482329214659054710180079077044654582965101805817
     1.1 asQDouble ln                       0.09531017980432494078744482329214659054710180079077
     1.1 asLargeFloat ln                    0.09531017980440484316240201678738230839371681213378906

     1.1 log10                              0.0413926851582251
     1.1 asShortFloat log10                 0.0413927
     1.1 asLongFloat log10                  0.04139268515822507582
     1.1 asQuadFloat log10                  0.0413926851582284376002860264816636
     1.1 asOctaFloat log10                  0.04139268515822507581665330045346321583627669892912363955022882609620284
     1.1 asQDouble log10                    0.041392685158225075816653300453463215836276698929124
     1.1 asLargeFloat log10                 0.04139268515825977878819230681983754038810729980468750

o  log2
return log base-2 of the receiver.
Raises an exception, if the receiver is less or equal to zero.
Here, fallback to the general logarithm code.

Usage example(s):

     2.0 log2
     4.0 log2
     (2.0 raisedTo:100.0) log2
     (10 raisedTo:1000) log2
     (10 raisedTo:2000) log2
     (10 raisedTo:4000) log2
     (10 raisedTo:8000) log2
     Float infinity log2
     Float NaN log2

o  log: aNumber
return log base aNumber of the receiver.
This will usually return a float value

Usage example(s):

      1000 log:10
      9 log:3
      (1000 log:10) floor
      (10 raisedTo:1000) log:10

o  nthRoot: nIn
return the nth root of the receiver

Usage example(s):

     10 nthRoot:1 -> 10
     10 nthRoot:2 -> 3.16227766016838
     10 nthRoot:3 -> 2.154434690031883722
     10 nthRoot:4 -> 1.77827941003892
     10 nthRoot:5 -> 1.58489319246111
     10 nthRoot:17 -> 1.14504756993828
     (10 nthRoot:4) raisedTo:4   
     (10 nthRoot:17) raisedTo:17   

     (100.0 nthRoot:1) raisedTo:1 
     (100.0 nthRoot:4) raisedTo:4 
     (100.0 nthRoot:5) raisedTo:5 
     (100.0 nthRoot:6) raisedTo:6                => 100.0
     (100.0 nthRoot:27) raisedTo:27              => 99.9999999999999 (errors accumulate)
     (100.0 asLargeFloat nthRoot:27) raisedTo:27 => 100.0 

     16.0 nthRoot:2       -> 4.0
     -16.0 nthRoot:3      -> -2.51984209978975
     16.0 nthRoot:4       -> 2.0
     -16.0 nthRoot:5      -> -1.74110112659225

     -16.0 nthRoot:2      -> error
     -16.0 nthRoot:4      -> error
     (Complex trapImaginary:[-16.0 nthRoot:4]) 
     (Complex trapImaginary:[-16.0 nthRoot:4]) raisedTo:4 -> -16 (with some rounding errors)

     Float infinity nthRoot:4
     Float NaN nthRoot:4

o  raisedTo: aNumber
return the receiver raised to aNumber

Usage example(s):

     2 raisedTo: 4
     -2 raisedTo: 4
     4 raisedTo: 1/2
     -4 raisedTo: 1/2
     8 raisedTo: 1/3
     -8 raisedTo: 1/3
     10 raisedTo: 4
     10 raisedTo: -4

     10 asQDouble raisedTo: 4       
     10 asQDouble raisedTo: -4   

     2.0 asQuadFloat raisedTo:(2.0 asQuadFloat)   
     2.0 asQuadFloat raisedTo:(0.5 asQuadFloat)       
     2.0 asQDouble raisedTo:(0.5)                 
     2.0 asQDouble raisedTo:(0.5 asQDouble)       
     2.0 asQDouble raisedTo:(0.5 asQuadFloat)     

     -8 asQDouble raisedTo:(1/3)       
     -8 asQuadFloat raisedTo:(1/3)       
     -8 asLargeFloat raisedTo:(1/3)       
     -8 asFloat raisedTo:(1/3)       
     -8 asShortFloat raisedTo:(1/3)       

o  real
Return the real part of a complex number.
For non-complex numbers, the receiver is returned.

o  sqrt
return the square root of the receiver

o  timesTenPower: anInteger
Return the receiver multiplied by 10 raised to the power of the argument.
i.e. self * (10 ** anInteger)

Usage example(s):

     123 timesTenPower:0  = 123*1 -> 123
     123 timesTenPower:1  = 123*10 -> 1230
     123 timesTenPower:2  = 123*100 -> 12300
     123 timesTenPower:3  = 123*1000 -> 123000

     (2 timesTenPower: -150) timesTenPower: 150  -> 2
     (2 timesTenPower: 150) timesTenPower: -150  -> 2
     (2 timesTenPower: 150) timesTenPower: -149  -> 20

o  timesTwoPower: anInteger
Return the receiver multiplied by 2 raised to the power of the argument.
I.e. self * (2**n)
Warning: may return infinity, if the result is too big;
or zero if too small.
For protocol completeness wrt. Squeak and ST80.

Usage example(s):

     2 timesTwoPower:0  = 2*1 -> 2
     2 timesTwoPower:1  = 2*2 -> 4
     2 timesTwoPower:2  = 2*4 -> 8

     123 timesTwoPower:0  = 123*1 -> 123
     123 timesTwoPower:1  = 123*2 -> 246
     123 timesTwoPower:2  = 123*4 -> 492
     123 timesTwoPower:3  = 123*8 -> 984

     (2 timesTwoPower: -150) timesTwoPower: 150  -> 2
     (2 timesTwoPower: 150) timesTwoPower: -150  -> 2
     (2 timesTwoPower: 150) timesTwoPower: -149  -> 4

measurement values
o  maxValue
the maximum possible value taking me as a measurement with possible error;
as I am exact, that's myself

o  minValue
the minimum possible value taking me as a measurement with possible error;
as I am exact, that's myself

printing & storing
o  displayOn: aGCOrStream
return a string to display the receiver.
The output radix is usually 10, but can be changed by setting
DefaultDisplayRadix (see Integer>>displayRadix:)

o  printOn: aStream
append a printed description of the receiver to aStream

o  printOn: aStream base: b
return a string representation of the receiver in the specified
radix (without the initial XXr)

Usage example(s):

     10 printOn:Transcript base:3
     31 printOn:Transcript base:3
     -20 printOn:Transcript base:16
     -20 printOn:Transcript base:10
     3000 factorial printOn:Transcript base:10

o  printOn: aStream base: b showRadix: showRadix
the central print method for integer.
Must be defined in concrete classes

** This method must be redefined in concrete classes (subclassResponsibility) **

o  printOn: aStream paddedWith: padCharacter to: size base: radix
100 printOn:Transcript paddedWith:$0 to:10 base:10. Transcript cr.
100 printOn:Transcript paddedWith:$0 to:10 base:16. Transcript cr.
100 printOn:Transcript paddedWith:(Character space) to:10 base:16. Transcript cr.
100 printOn:Transcript paddedWith:(Character space) to:10 base:2. Transcript cr.

o  printOn: aStream thousandsSeparator: thousandsSeparator
print the receiver as business number with thousands separator to aStream.
thousandsSeparator is locale specific and is usualy a single quote ('), a comma or period.

Usage example(s):

     swiss style:
     1000000 printOn:Transcript thousandsSeparator:$'.     Transcript cr.
     12345678 printOn:Transcript thousandsSeparator:$'.     Transcript cr.
     1234567 printOn:Transcript thousandsSeparator:$'.     Transcript cr.
     123456 printOn:Transcript thousandsSeparator:$'.     Transcript cr.
     123056 printOn:Transcript thousandsSeparator:$'.     Transcript cr.
     12345 printOn:Transcript thousandsSeparator:$'.     Transcript cr.
     1234 printOn:Transcript thousandsSeparator:$'.     Transcript cr.
     123 printOn:Transcript thousandsSeparator:$'.     Transcript cr.

     (12345678.12 asFixedPoint:2) printOn:Transcript thousandsSeparator:$'.     Transcript cr.
     1234567.12 printOn:Transcript thousandsSeparator:$'.     Transcript cr.
     123456.12 printOn:Transcript thousandsSeparator:$'.     Transcript cr.
     123056.12 printOn:Transcript thousandsSeparator:$'.     Transcript cr.
     12345.12 printOn:Transcript thousandsSeparator:$'.     Transcript cr.
     1234.12 printOn:Transcript thousandsSeparator:$'.     Transcript cr.
     123.12 printOn:Transcript thousandsSeparator:$'.     Transcript cr.

     us style:
     1000000 printOn:Transcript thousandsSeparator:$,.     Transcript cr.
     12345678 printOn:Transcript thousandsSeparator:$,.     Transcript cr.
     1234567 printOn:Transcript thousandsSeparator:$,.     Transcript cr.
     123456 printOn:Transcript thousandsSeparator:$,.     Transcript cr.
     12345 printOn:Transcript thousandsSeparator:$,.     Transcript cr.
     1234 printOn:Transcript thousandsSeparator:$,.     Transcript cr.
     123 printOn:Transcript thousandsSeparator:$,.     Transcript cr.

     german (european ?) style
     1000000 printOn:Transcript thousandsSeparator:$..     Transcript cr.
     12345678 printOn:Transcript thousandsSeparator:$..     Transcript cr.
     1234567 printOn:Transcript thousandsSeparator:$..     Transcript cr.
     123456 printOn:Transcript thousandsSeparator:$..     Transcript cr.
     12345 printOn:Transcript thousandsSeparator:$..     Transcript cr.
     1234 printOn:Transcript thousandsSeparator:$..     Transcript cr.
     123 printOn:Transcript thousandsSeparator:$..     Transcript cr.

o  printStringBase: base

o  printStringBase: base showRadix: showRadixBoolean
return a string representation of the receiver in the specified base;
optionally prepend XXr to the string.
See also: radixPrintStringRadix:
printOn:base:showRadix:

o  printStringFormat: formatString
Return a printed representation of the receiver as specified by formatString,
which is defined by PrintfScanf.

Usage example(s):

     1.2345 printStringFormat:'%4.2f' -> '1.23'
     123 printStringFormat:'%4d' -> ' 123'
     123 printStringFormat:'%5.2f' -> '123.0'

o  printStringRadix: base
marked as obsolete by Stefan Vogel at 22-Apr-2024

** This is an obsolete interface - do not use it (it may vanish in future versions) **

o  printStringRadix: base showRadix: showRadixBoolean
marked as obsolete by Stefan Vogel at 22-Apr-2024

** This is an obsolete interface - do not use it (it may vanish in future versions) **

o  printStringScientific
return a 'user friendly' scientific printString.
Notice: this returns a Text object with superscript digits,
which requires a font capapble of displaying it correctly.
Also: the returned string is not meant to be read back - purely for GUIs

Usage example(s):

     1.23456 printString            -> '1.23456'
     1.23456 printStringScientific  1.23456×10^0 (with superscript zero at end)
     1.23e14 printStringScientific  1.23×10^14   (with superscript zero at end)
     PrintfScanf printf:'%e' argument:1.23456 -> '1.23456e0' 
     PrintfScanf printf:'%g' argument:1.23456 -> '1.23456' 
     PrintfScanf printf:'%f' argument:1.23456 -> '1.23456' 
     PrintfScanf printf:'%e' argument:1.234   -> '1.234e0' 
     PrintfScanf printf:'%g' argument:1.234   -> '1.234' 
     PrintfScanf printf:'%f' argument:1.234   -> '1.234' 

o  printStringWithThousandsSeparator
print the receiver as swiss business number with thousands separator to aStream.
Caveat: Should use the separator from the locale here

Usage example(s):

     1000000 printStringWithThousandsSeparator
     12345678 printStringWithThousandsSeparator
     1234567 printStringWithThousandsSeparator
     123456 printStringWithThousandsSeparator
     12345 printStringWithThousandsSeparator
     1234 printStringWithThousandsSeparator
     123 printStringWithThousandsSeparator

     1000000 asFixedPoint printStringWithThousandsSeparator
     12345678 asFixedPoint printStringWithThousandsSeparator
     1234567 asFixedPoint printStringWithThousandsSeparator
     123456 asFixedPoint printStringWithThousandsSeparator
     12345 asFixedPoint printStringWithThousandsSeparator
     1234 asFixedPoint printStringWithThousandsSeparator
     123 asFixedPoint printStringWithThousandsSeparator
     ((9999999//10000) asFixedPoint:9) printStringWithThousandsSeparator
     ((99999999//10000) asFixedPoint:9) printStringWithThousandsSeparator

o  printStringWithThousandsSeparator: thousandsSeparator
print the receiver as business number with a thousands separator to aStream.
Notice:
americans use comma
germans (europeans ?) use a dot
swiss people (business people ?) use a single quote

Caveat: Should use the separator from the locale here

Usage example(s):

     Transcript showCR:(1000000 printStringWithThousandsSeparator:$').
     Transcript showCR:(12345678 printStringWithThousandsSeparator:$').
     Transcript showCR:(1234567 printStringWithThousandsSeparator:$').
     Transcript showCR:(123456 printStringWithThousandsSeparator:$').
     Transcript showCR:(12345 printStringWithThousandsSeparator:$').
     Transcript showCR:(1234 printStringWithThousandsSeparator:$').
     Transcript showCR:(123 printStringWithThousandsSeparator:$').

     Transcript showCR:(1000000 printStringWithThousandsSeparator:$,).
     Transcript showCR:(12345678 printStringWithThousandsSeparator:$,).
     Transcript showCR:(1234567 printStringWithThousandsSeparator:$,).
     Transcript showCR:(123456 printStringWithThousandsSeparator:$,).
     Transcript showCR:(12345 printStringWithThousandsSeparator:$,).
     Transcript showCR:(1234 printStringWithThousandsSeparator:$,).
     Transcript showCR:(123 printStringWithThousandsSeparator:$,).

     Transcript showCR:((1000000 asFixedPoint:2) printStringWithThousandsSeparator:$,).
     Transcript showCR:((12345678 asFixedPoint:2) printStringWithThousandsSeparator:$,).
     Transcript showCR:((1234567 asFixedPoint:2) printStringWithThousandsSeparator:$,).
     Transcript showCR:((123456 asFixedPoint:2) printStringWithThousandsSeparator:$,).
     Transcript showCR:((12345 asFixedPoint:2) printStringWithThousandsSeparator:$,).
     Transcript showCR:((1234 asFixedPoint:2) printStringWithThousandsSeparator:$,).
     Transcript showCR:((123 asFixedPoint:2) printStringWithThousandsSeparator:$,).

o  printWithSignOn: aStream
append a printed description of the receiver to aStream.
Prepends '+' or '-'

o  printWithoutFractionIfPossibleOn: aStream
append a printed representation of the receiver to
the argument, aStream.
If the receiver has no fractional part (i.e. ends with .0),
then print the integer part only

Usage example(s):

     1.0 printOn:Transcript
     1.0 printWithoutFractionIfPossibleOn:Transcript

     1.1 printOn:Transcript
     1.1 printWithoutFractionIfPossibleOn:Transcript

     (1/10) printOn:Transcript
     (1/10) printWithoutFractionIfPossibleOn:Transcript

     (1/1000) printOn:Transcript
     (1/1000) printWithoutFractionIfPossibleOn:Transcript
     ((1/1000) asScaledDecimal) printWithoutFractionIfPossibleOn:Transcript

     1e10 printWithoutFractionIfPossibleOn:Transcript
     1e15 printWithoutFractionIfPossibleOn:Transcript
     1e20 printWithoutFractionIfPossibleOn:Transcript

o  printfPrintString: formatString
Return a printed representation of the receiver as specified by formatString,
which is defined by printf.

Usage example(s):

     2.0 asQDouble printfPrintString:'%10f'
     2.0 asQDouble printfPrintString:'%10.8f'
     2.0 printfPrintString:'%10.8f'
     12345 printfPrintString:'0x%06x'

o  radixPrintStringRadix: radix
return a string representation of the receiver in the specified
base; prepend XXr to the string

Usage example(s):

     31 radixPrintStringRadix:2
     31 radixPrintStringRadix:3
     31 radixPrintStringRadix:10
     31 radixPrintStringRadix:16
     31 radixPrintStringRadix:36

o  storeOn: aStream
append a string for storing the receiver onto the argument, aStream
- since numbers are literals,they store as they print.

o  storeString
return a string for storing
- since numbers are literals, they store as they print.

testing
o  even
return true if the receiver is divisible by 2.

Usage example(s):

     2 even
     2.0 even
     3.0 even
     2.4 even
     (5/3) even

     2 asFraction even
     (2 asFixedPoint:5) even
     (2 asScaledDecimal:5) even
     (2 asFixedDecimal:5) even
     2 asFloatE even
     2 asFloatD even
     2 asFloatQ even
     2 asFloatQD even

     (2.1 asFloatQD - (QDouble readFrom:'2.1')) fractionPart

o  isDivisibleBy: aNumber
return true, if the receiver can be divided by the argument, aNumber without a remainder.
Notice, that the result is only worth trusting,
if the receiver is an integer.

Usage example(s):

     3 isDivisibleBy:2      false
     4 isDivisibleBy:2      true
     4.0 isDivisibleBy:2    true
     4.0 isDivisibleBy:2.0  true
     4.1 isDivisibleBy:2.0  false
     4.5 isDivisibleBy:4.5  true
     4.5 isDivisibleBy:1.0  false
     4.5 isDivisibleBy:1    false

o  isExact
Answer whether the receiver performs exact arithmetic.
To be redefined in concrete classes.

o  isNumber
return true, if the receiver is a kind of number

o  isPerfectSquare
return true if I am a perfect square.
That is a number for which the square root is an integer.

Usage example(s):

     0 isPerfectSquare  
     0.0 isPerfectSquare
     1 isPerfectSquare  
     1.0 isPerfectSquare
     2 isPerfectSquare     
     2.0 isPerfectSquare   
     3 isPerfectSquare     
     3.0 isPerfectSquare   
     4 isPerfectSquare     
     4.0 isPerfectSquare   
     9 isPerfectSquare
     9.0 isPerfectSquare
     123456789012345678901234567890 squared isPerfectSquare
     1000 factorial squared isPerfectSquare
     (1 to:100) count:#isPerfectSquare 
     (1 to:1000) count:#isPerfectSquare 
     (1 to:1000) select:#isPerfectSquare 

o  isReal
return true, if the receiver is some kind of real number (as opposed to a complex);
true is returned here - the method is redefined from Object.

o  isRealNumber
return true, if the receiver is a real number.
Notice that isReal is only understood inside the number hierarchy,
whereas isRealNumber is understood by everyone

o  isZero
return true, if the receiver is zero

Usage example(s):

        0.0 isZero.
        0.0 asLargeFloat isZero

tracing
o  traceInto: aRequestor level: level from: referrer
double dispatch into tracer, passing my type implicitely in the selector

trigonometric
o  arcCos
return the arccosine of the receiver (in radians)

o  arcCot
return the arccotangent of the receiver (as radians)

Usage example(s):

     1 cot              => 0.642092615934331
     1 cot arcCot       => 1.0
     0.1 arcCot         => 1.47112767430373
     0.00001 arcCot     => 1.5707863267949
     0 arcCot           => 1.5707963267949
     0.00001 asFloat128 arcCot => 1.57078632679489695256383697443
     0 asFloat128 arcCot       => 1.57079632679489661923132169164

o  arcSin
return the arcsine of the receiver (in radians)

o  arcTan
return the arctangent of the receiver (as radians)

o  arcTan2: x
return atan2(self,x) (as radians).
Notice that the receiver is y
(as in the called C-library function of Float-arcTan2)

Usage example(s):

     0 asQDouble arcTan2:0   -> error
     1 asQDouble arcTan2:0   -> 1.5707963267949   (pi/2)
     -1 asQDouble arcTan2:0  -> -1.5707963267949  (-pi/2)

     0 asQDouble arcTan2:-1  -> 3.14159265358979  (pi)
     0 asQDouble arcTan2:1   -> 0.0

     1 asQDouble arcTan2:1   -> 0.785398163397448  (pi/4)
     -1 asQDouble arcTan2:-1 -> -2.35619449019234  -(3/4 pi)

     1 asQDouble arcTan2:-1  -> 2.35619449019234   (3/4 pi)
     -1 asQDouble arcTan2:1  -> -0.785398163397448  -(pi/4)

     2 asQDouble arcTan:1    -> 1.10714871779409
     1 asQDouble arcTan:2    -> 0.463647609000806

Usage example(s):

     0 asLargeFloat arcTan2:0   -> error
     1 asLargeFloat arcTan2:0   -> 1.5707963267949   (pi/2)
     -1 asLargeFloat arcTan2:0  -> -1.5707963267949  (-pi/2)

     0 asLargeFloat arcTan2:-1  -> 3.14159265358979  (pi)
     0 asLargeFloat arcTan2:1   -> 0.0

     1 asLargeFloat arcTan2:1   -> 0.785398163397448  (pi/4)
     -1 asLargeFloat arcTan2:-1 -> -2.35619449019234  -(3/4 pi)

     1 asLargeFloat arcTan2:-1  -> 2.35619449019234   (3/4 pi)
     -1 asLargeFloat arcTan2:1  -> -0.785398163397448  -(pi/4)

     2 asLargeFloat arcTan:1    -> 1.10714871779409
     1 asLargeFloat arcTan:2    -> 0.463647609000806

o  arcTan: denominator
Evaluate the four quadrant arc tangent of the argument denominator (x) and the receiver (y).

o  cos
return the cosine of the receiver (interpreted as radians)

o  cot
return the cotangent of the receiver

o  csc
return the cosecant of the receiver (interpreted as radians)

o  hypot: b
answer sqrt(self*self + b*b)
The value computed by this function is
- the length of the hypotenuse of a right-angled triangle with sides of length x and y,
- or the distance of the point (x,y) from the origin (0,0),
- or the magnitude of a complex number x+iy.

Usage example(s):

     10 hypot:10      -> 14.142135623731
     10 hypot:20      -> 22.3606797749979

     10.0 hypot:10.0  -> 14.142135623731
     10.0 hypot:20.0  -> 22.3606797749979
     10.0 hypot:20    -> 22.3606797749979
     10.0 asQDouble hypot:20    -> 22.36067977
     10.0 hypot:20 asQDouble    -> 22.36067977

o  inverseSqrt
compute 1/sqrt(x)

o  moduloNegPiToPi
return the receiver modulo 2*pi (i.e. wrap into -pi .. +pi)

Usage example(s):

     0.0 negated
     (Float pi) moduloNegPiToPi         3.14159265358979
     (Float pi * 2) moduloNegPiToPi     0.0
     (Float pi * 3) moduloNegPiToPi     -3.14159265358979
     (Float pi * 4) moduloNegPiToPi     0.0
     (Float pi * 5) moduloNegPiToPi     -3.14159265358979

     (Float pi * -1) moduloNegPiToPi    3.14159265358979
     (Float pi * -2) moduloNegPiToPi    -0.0
     (Float pi * -3) moduloNegPiToPi    3.14159265358979
     (Float pi * 5.5) moduloNegPiToPi   -1.5707963267949

o  sec
return the secant of the receiver (interpreted as radians)

o  sin
return the sine of the receiver (interpreted as radians)

Usage example(s):

     10 asQuadFloat sin

o  tan
return the tangens of the receiver (interpreted as radians)

trigonometric (degrees)
o  degreeCos
Return the cosine of the receiver taken as an angle in degrees.

o  degreeSin
Return the sine of the receiver taken as an angle in degrees.

o  degreeTan
Return the cosine of the receiver taken as an angle in degrees.

trigonometric - hyperbolic
o  arCosh
return the hyperbolic area cosine of the receiver.

o  arCoth
return the inverse hyperbolic cotangent of the receiver.

o  arCsch
return the inverse hyperbolic cosecant of the receiver.

o  arSech
return the inverse hyperbolic secant of the receiver.

Usage example(s):

should probably be called arSech

o  arSinh
return the inverse hyperbolic area sine of the receiver.

o  arTanh
return the inverse hyperbolic area tangent of the receiver.

o  arcosh
return the inverse hyperbolic cosine of the receiver.
Alternative name for compatibility

o  arcoth
return the inverse hyperbolic cotangent of the receiver.
Alternative name for compatibility

o  arcsch
return the inverse hyperbolic cosecant of the receiver.
Alternative name for compatibility

o  arsech
return the inverse hyperbolic secant of the receiver.
Alternative name for compatibility

o  arsinh
return the inverse hyperbolic sine of the receiver.
Alternative name for compatibility

o  artanh
return the inverse hyperbolic tangent of the receiver.
Alternative name for compatibility

o  cosh
return the hyperbolic cosine of the receiver (interpreted as radians)

Usage example(s):

^ self cosh_withAccuracy:self epsilon

o  coth
return the hyperbolic cotangent of the receiver

o  csch
return the hyperbolic cosecant of the receiver (interpreted as radians)

o  sech
return the hyperbolic secant of the receiver (interpreted as radians)

o  sinh
return the hyperbolic sine of the receiver

Usage example(s):

        10 sinh                     -> 11013.23287470339338
        (10 exp - (-10 exp)) / 2    -> 11013.23287470339338

o  tanh
return the hyperbolic tangens of the receiver

truncation & rounding
o  detentBy: detent atMultiplesOf: grid snap: snap
Map all values that are within detent/2 of any multiple of grid
to that multiple.
Otherwise, if snap is true, return self, meaning that the values
in the dead zone will never be returned.
If snap is false, then expand the range between dead zones
so that it covers the range between multiples of the grid,
and scale the value by that factor.

Usage example(s):

     (170 to: 190 by: 2) collect: [:a | a detentBy: 10 atMultiplesOf: 90 snap: true]
     (170 to: 190 by: 2) collect: [:a | a detentBy: 10 atMultiplesOf: 90 snap: false]
     (3.9 to: 4.1 by: 0.02) collect: [:a | a detentBy: 0.1 atMultiplesOf: 1.0 snap: true]
     (-3.9 to: -4.1 by: -0.02) collect: [:a | a detentBy: 0.1 atMultiplesOf: 1.0 snap: false]

o  fractionPart
return a number with value from digits after the decimal point.
i.e. the receiver minus its truncated value,
such that:
(self truncated + self fractionPart) = self
Floats will return an inexact float;
Fractions will return an exact fraction.
ScaledDecimals will return an exact scaled decimal

Usage example(s):

     1234.56789 fractionPart              -- beware of rounding errors in floats
     1234.56789q fractionPart             -- beware of rounding errors in floats
     1234.56789 asShortFloat fractionPart -- beware of rounding errors in floats
     1234.56789s fractionPart -- scaledDecimals do not have this problem
     (5/3) fractionPart       -- fractions do not have this problem

     1.2345e0 fractionPart   0.2345
     1.2345e1 fractionPart   0.345000000000001
     1.2345e2 fractionPart   0.450000000000003
     1.2345e3 fractionPart   0.5
     1.2345e4 fractionPart   0.0
     1.2345e6 fractionPart   0.0

     (1/4) fractionPart      (1/4)
     (5/4) fractionPart      (1/4)
     (6/4) fractionPart      (1/2)
     (8/9) fractionPart      (8/9)

     (16/10) fractionPart    (3/5)
     (16/10) truncated       1
     (16/10) fractionPart + (16/10) truncated  (8/5)

     (11/9) fractionPart                       (2/9)
     (11/9) fractionPart + (11/9) truncated    (11/9)

     1.6 asLongFloat fractionPart + 1.6 asLongFloat truncated  -- beware rounding errors in floats
     -1.6 asLongFloat fractionPart + -1.6 asLongFloat truncated -> -1.600000000000000089
     (16/10) fractionPart + (16/10) truncated -> (8/5)

     (5/3) fractionPart                     -> (2/3)
     (5/3) truncated                        -> 1
     (5/3) truncated + (5/3) fractionPart   -> (5/3)

     ((5/3) asScaledDecimal:3) fractionPart -> 0.667
     ((5/3) asScaledDecimal:3) truncated    -> 1
     ((5/3) asScaledDecimal:3) truncated + ((5/3) asScaledDecimal:3) fractionPart -> 1.667

o  integerPart
return a number with value from digits before the decimal point.
(i.e. the value truncated towards zero)
such that:
(self integerPart + self fractionPart) = self
Notice that due to rounding errors, the above expression might
be untrue for Floats.

Usage example(s):

     1234.56789 integerPart
     1.2345e6 integerPart
     12.5 integerPart
     -12.5 integerPart
     (5/3) integerPart
     (-5/3) integerPart
     (5/3) truncated
     (-5/3) truncated

     (1234.56789 integerPart + 1234.56789 fractionPart) = 1234.56789

o  roundedToScale: scale
return the receiver as a scaled decimal, rounded to scale fractional digits

Usage example(s):

     123.4567 truncatedToScale:2 -> 123.45
     123.4567 roundedToScale:2   -> 123.46

o  truncatedAsFloat
return the receiver truncated towards zero as an instance of its class.
This is much like #truncated, but avoids a (possibly expensive) conversion
of the result to an integer.
It may be useful, if the result is to be further used in another
float-operation.

** This method must be redefined in concrete classes (subclassResponsibility) **

o  truncatedToScale: scale
return the receiver as a scaled decimal, truncated to scale fractional digits

Usage example(s):

     123.4567 truncatedToScale:2   -> 123.45
     123.4567 roundedToScale:2     -> 123.46
     123.4567q roundedToScale:2    -> 123.46
     123.4567s5 roundedToScale:2   -> 123.46
     123.4567s5 truncatedToScale:2 -> 123.45



ST/X 7.7.0.0; WebServer 1.702 at 20f6060372b9.unknown:8081; Mon, 18 Nov 2024 02:37:53 GMT